Suppr超能文献

用于电动流体的新型 3D 纺织结构和几何形状。

Novel 3D textile structures and geometries for electrofluidics.

机构信息

ARC Centre of Excellence for Electromaterials Science (ACES), Intelligent Polymer Research Institute (IPRI), Australian Institute for Innovative Materials (AIIM), Innovation Campus, University of Wollongong, North Wollongong, New South Wales, Australia.

出版信息

Electrophoresis. 2024 Jul;45(13-14):1171-1181. doi: 10.1002/elps.202400020. Epub 2024 Jun 4.

Abstract

The integration of microfluidics with electric field control, commonly referred to as electrofluidics, has led to new opportunities for biomedical analysis. The requirement for closed microcapillary channels in microfluidics, typically formed via complex microlithographic fabrication approaches, limits the direct accessibility to the separation processes during conventional electrofluidic devices. Textile structures provide an alternative and low-cost approach to overcome these limitations via providing open and surface-accessible capillary channels. Herein, we investigate the potential of different 3D textile structures for electrofluidics. In this study, 12 polyester yarns were braided around nylon monofilament cores of different diameters to produce functional 3D core-shell textile structures. Capillary electrophoresis performances of these 3D core-shell textile structures both before and after removing the nylon core were evaluated in terms of mobility and bandwidth of a fluorescence marker compound. It was shown that the fibre arrangement and density govern the inherent capillary formation within these textile structures which also impacts upon the solute analyte mobility and separation bandwidth during electrophoretic studies. Core-shell textile structures with a 0.47 mm nylon core exhibited the highest fluorescein mobility and presented a narrower separation bandwidth. This optimal textile structure was readily converted to different geometries via a simple heat-setting of the central nylon core. This approach can be used to fabricate an array of miniaturized devices that possess many of the basic functionalities required in electrofluidics while maintaining open surface access that is otherwise impractical in classical approaches.

摘要

微流控与电场控制的集成,通常称为电液学,为生物医学分析带来了新的机遇。微流控中对封闭微通道的要求,通常通过复杂的微光刻制造方法形成,限制了在传统电液学器件中对分离过程的直接可及性。纺织品结构提供了一种替代的、低成本的方法,可以通过提供开放的、表面可接近的毛细管通道来克服这些限制。本文研究了不同的 3D 纺织品结构在电液学中的应用潜力。在这项研究中,将 12 根聚酯纱线围绕不同直径的尼龙单丝芯编织在一起,以生产具有功能性的 3D 芯壳纺织品结构。使用荧光标记化合物评估了这些 3D 芯壳纺织品结构在去除尼龙芯前后的毛细管电泳性能,包括迁移率和带宽。结果表明,纤维排列和密度决定了这些纺织品结构中固有的毛细管形成,这也会影响电泳研究中溶质分析物的迁移率和分离带宽。具有 0.47mm 尼龙芯的芯壳纺织品结构表现出最高的荧光素迁移率,并呈现出更窄的分离带宽。这种最优的纺织品结构可以通过简单地对中心尼龙芯进行热定形,很容易转换为不同的几何形状。这种方法可用于制造一系列微型化器件,这些器件具有电液学所需的许多基本功能,同时保持开放的表面接触,这在传统方法中是不切实际的。

相似文献

1
Novel 3D textile structures and geometries for electrofluidics.用于电动流体的新型 3D 纺织结构和几何形状。
Electrophoresis. 2024 Jul;45(13-14):1171-1181. doi: 10.1002/elps.202400020. Epub 2024 Jun 4.
3
Novel Approach toward Electrofluidic Substrates Utilizing Textile-Based Braided Structure.利用纺织编织结构的新型电液流基底方法。
ACS Appl Mater Interfaces. 2020 Oct 7;12(40):45618-45628. doi: 10.1021/acsami.0c13740. Epub 2020 Sep 24.
6
Life-Saving Threads: Advances in Textile-Based Analytical Devices.救命线:纺织基分析器件的进展。
ACS Comb Sci. 2019 Apr 8;21(4):229-240. doi: 10.1021/acscombsci.8b00126. Epub 2019 Feb 11.
7
Wearable E-Textiles Using a Textile-Centric Design Approach.采用以纺织品为中心的设计方法的可穿戴电子纺织品。
Acc Chem Res. 2021 Nov 2;54(21):4051-4064. doi: 10.1021/acs.accounts.1c00433. Epub 2021 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验