Suppr超能文献

多保真度-CMA:一种用于 3D 心脏机电模型高效个性化的多保真度方法。

Multifidelity-CMA: a multifidelity approach for efficient personalisation of 3D cardiac electromechanical models.

机构信息

Inria, Asclepios Research Project, Sophia Antipolis, France.

Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.

出版信息

Biomech Model Mechanobiol. 2018 Feb;17(1):285-300. doi: 10.1007/s10237-017-0960-0. Epub 2017 Sep 11.

Abstract

Personalised computational models of the heart are of increasing interest for clinical applications due to their discriminative and predictive abilities. However, the simulation of a single heartbeat with a 3D cardiac electromechanical model can be long and computationally expensive, which makes some practical applications, such as the estimation of model parameters from clinical data (the personalisation), very slow. Here we introduce an original multifidelity approach between a 3D cardiac model and a simplified "0D" version of this model, which enables to get reliable (and extremely fast) approximations of the global behaviour of the 3D model using 0D simulations. We then use this multifidelity approximation to speed-up an efficient parameter estimation algorithm, leading to a fast and computationally efficient personalisation method of the 3D model. In particular, we show results on a cohort of 121 different heart geometries and measurements. Finally, an exploitable code of the 0D model with scripts to perform parameter estimation will be released to the community.

摘要

由于其判别和预测能力,个性化的心脏计算模型越来越受到临床应用的关注。然而,使用 3D 心脏机电模型模拟单个心跳可能需要很长时间并且计算成本很高,这使得一些实际应用(例如从临床数据估计模型参数(个性化))非常缓慢。在这里,我们引入了一种 3D 心脏模型和简化的“0D”版本之间的原始多保真度方法,该方法可以使用 0D 模拟获得 3D 模型全局行为的可靠(并且非常快速)近似值。然后,我们使用这种多保真度近似来加速高效的参数估计算法,从而实现 3D 模型的快速和计算效率高的个性化方法。特别是,我们将展示在 121 个不同心脏几何形状和测量结果的队列上的结果。最后,将向社区发布带有执行参数估计脚本的 0D 模型可利用代码。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验