Suppr超能文献

用于大分子晶体学实验的快速高效无损压缩算法研究。

Investigation of fast and efficient lossless compression algorithms for macromolecular crystallography experiments.

作者信息

Bernstein Herbert J, Jakoncic Jean

机构信息

Ronin Institute for Independent Scholarship, c/o NSLS-II, Brookhaven National Laboratory, Bldg 745, Upton, NY 11973-5000, USA.

National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg 745, Upton, NY 11973-5000, USA.

出版信息

J Synchrotron Radiat. 2024 Jul 1;31(Pt 4):647-654. doi: 10.1107/S160057752400359X. Epub 2024 Jun 5.

Abstract

Structural biology experiments benefit significantly from state-of-the-art synchrotron data collection. One can acquire macromolecular crystallography (MX) diffraction data on large-area photon-counting pixel-array detectors at framing rates exceeding 1000 frames per second, using 200 Gbps network connectivity, or higher when available. In extreme cases this represents a raw data throughput of about 25 GB s, which is nearly impossible to deliver at reasonable cost without compression. Our field has used lossless compression for decades to make such data collection manageable. Many MX beamlines are now fitted with DECTRIS Eiger detectors, all of which are delivered with optimized compression algorithms by default, and they perform well with current framing rates and typical diffraction data. However, better lossless compression algorithms have been developed and are now available to the research community. Here one of the latest and most promising lossless compression algorithms is investigated on a variety of diffraction data like those routinely acquired at state-of-the-art MX beamlines.

摘要

结构生物学实验从最先进的同步加速器数据收集中受益匪浅。人们可以在大面积光子计数像素阵列探测器上以超过每秒1000帧的帧速率获取大分子晶体学(MX)衍射数据,使用200 Gbps的网络连接,若有更高的连接速度则使用更高的速度。在极端情况下,这代表着约25 GB/s的原始数据吞吐量,若不进行压缩,几乎不可能以合理成本实现。我们这个领域已经使用无损压缩数十年,以使此类数据收集变得可控。现在许多MX光束线都配备了DECTRIS Eiger探测器,所有这些探测器默认都配备了优化的压缩算法,并且在当前的帧速率和典型衍射数据下表现良好。然而,已经开发出了更好的无损压缩算法,现在可供研究界使用。本文在各种衍射数据上研究了一种最新且最有前景的无损压缩算法,这些衍射数据类似于在最先进的MX光束线常规获取的数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/231e/11226158/ddad3b6c906f/s-31-00647-fig1.jpg

相似文献

1
Investigation of fast and efficient lossless compression algorithms for macromolecular crystallography experiments.
J Synchrotron Radiat. 2024 Jul 1;31(Pt 4):647-654. doi: 10.1107/S160057752400359X. Epub 2024 Jun 5.
2
TERSE/PROLIX (TRPX) - a new algorithm for fast and lossless compression and decompression of diffraction and cryo-EM data.
Acta Crystallogr A Found Adv. 2023 Nov 1;79(Pt 6):536-541. doi: 10.1107/S205327332300760X. Epub 2023 Sep 25.
4
Development of SPACE-II for rapid sample exchange at SPring-8 macromolecular crystallography beamlines.
Acta Crystallogr D Struct Biol. 2020 Feb 1;76(Pt 2):155-165. doi: 10.1107/S2059798320000030. Epub 2020 Jan 31.
5
Wireless EEG System Achieving High Throughput and Reduced Energy Consumption Through Lossless and Near-Lossless Compression.
IEEE Trans Biomed Circuits Syst. 2018 Feb;12(1):231-241. doi: 10.1109/TBCAS.2017.2779324.
6
Application of in situ diffraction in high-throughput structure determination platforms.
Methods Mol Biol. 2015;1261:233-53. doi: 10.1007/978-1-4939-2230-7_13.
7
Automatic processing of macromolecular crystallography X-ray diffraction data at the ESRF.
J Appl Crystallogr. 2013 Jun 1;46(Pt 3):804-810. doi: 10.1107/S0021889813006195. Epub 2013 May 15.
8
Fast and accurate data collection for macromolecular crystallography using the JUNGFRAU detector.
Nat Methods. 2018 Oct;15(10):799-804. doi: 10.1038/s41592-018-0143-7. Epub 2018 Oct 1.
9
FMX - the Frontier Microfocusing Macromolecular Crystallography Beamline at the National Synchrotron Light Source II.
J Synchrotron Radiat. 2021 Mar 1;28(Pt 2):650-665. doi: 10.1107/S1600577520016173. Epub 2021 Feb 25.
10
ID30A-3 (MASSIF-3) - a beamline for macromolecular crystallography at the ESRF with a small intense beam.
J Synchrotron Radiat. 2020 May 1;27(Pt 3):844-851. doi: 10.1107/S1600577520004002. Epub 2020 Apr 29.

引用本文的文献

1
Adaptive gradient scaling: integrating Adam and landscape modification for protein structure prediction.
BMC Bioinformatics. 2025 Jul 1;26(1):161. doi: 10.1186/s12859-025-06185-2.
2
Massive compression for high data rate macromolecular crystallography (HDRMX): impact on diffraction data and subsequent structural analysis.
J Synchrotron Radiat. 2025 Mar 1;32(Pt 2):385-398. doi: 10.1107/S1600577525000396. Epub 2025 Feb 6.

本文引用的文献

1
Elucidating polymorphs of crystal structures by intensity-based hierarchical clustering analysis of multiple diffraction data sets.
Acta Crystallogr D Struct Biol. 2023 Oct 1;79(Pt 10):909-924. doi: 10.1107/S2059798323007039. Epub 2023 Oct 25.
2
Bragg coherent diffraction imaging with the CITIUS charge-integrating detector.
J Appl Crystallogr. 2023 Jun 12;56(Pt 4):1032-1037. doi: 10.1107/S1600576723004314. eCollection 2023 Aug 1.
3
AMX - the highly automated macromolecular crystallography (17-ID-1) beamline at the NSLS-II.
J Synchrotron Radiat. 2022 Nov 1;29(Pt 6):1480-1494. doi: 10.1107/S1600577522009377. Epub 2022 Oct 21.
4
A simple technique to classify diffraction data from dynamic proteins according to individual polymorphs.
Acta Crystallogr D Struct Biol. 2022 Mar 1;78(Pt 3):268-277. doi: 10.1107/S2059798321013425. Epub 2022 Feb 18.
5
Future trends in synchrotron science at NSLS-II.
J Phys Condens Matter. 2020 Jun 18;32(37). doi: 10.1088/1361-648X/ab7b19.
6
Solution scattering at the Life Science X-ray Scattering (LiX) beamline.
J Synchrotron Radiat. 2020 May 1;27(Pt 3):804-812. doi: 10.1107/S1600577520002362. Epub 2020 Mar 31.
7
Best practices for high data-rate macromolecular crystallography (HDRMX).
Struct Dyn. 2020 Jan 9;7(1):014302. doi: 10.1063/1.5128498. eCollection 2020 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验