Bernstein Herbert J, Jakoncic Jean
Ronin Institute for Independent Scholarship, c/o NSLS-II, Brookhaven National Laboratory, Bldg 745, Upton, NY 11973-5000, USA.
National Synchrotron Light Source II, Brookhaven National Laboratory, Bldg 745, Upton, NY 11973-5000, USA.
J Synchrotron Radiat. 2024 Jul 1;31(Pt 4):647-654. doi: 10.1107/S160057752400359X. Epub 2024 Jun 5.
Structural biology experiments benefit significantly from state-of-the-art synchrotron data collection. One can acquire macromolecular crystallography (MX) diffraction data on large-area photon-counting pixel-array detectors at framing rates exceeding 1000 frames per second, using 200 Gbps network connectivity, or higher when available. In extreme cases this represents a raw data throughput of about 25 GB s, which is nearly impossible to deliver at reasonable cost without compression. Our field has used lossless compression for decades to make such data collection manageable. Many MX beamlines are now fitted with DECTRIS Eiger detectors, all of which are delivered with optimized compression algorithms by default, and they perform well with current framing rates and typical diffraction data. However, better lossless compression algorithms have been developed and are now available to the research community. Here one of the latest and most promising lossless compression algorithms is investigated on a variety of diffraction data like those routinely acquired at state-of-the-art MX beamlines.
结构生物学实验从最先进的同步加速器数据收集中受益匪浅。人们可以在大面积光子计数像素阵列探测器上以超过每秒1000帧的帧速率获取大分子晶体学(MX)衍射数据,使用200 Gbps的网络连接,若有更高的连接速度则使用更高的速度。在极端情况下,这代表着约25 GB/s的原始数据吞吐量,若不进行压缩,几乎不可能以合理成本实现。我们这个领域已经使用无损压缩数十年,以使此类数据收集变得可控。现在许多MX光束线都配备了DECTRIS Eiger探测器,所有这些探测器默认都配备了优化的压缩算法,并且在当前的帧速率和典型衍射数据下表现良好。然而,已经开发出了更好的无损压缩算法,现在可供研究界使用。本文在各种衍射数据上研究了一种最新且最有前景的无损压缩算法,这些衍射数据类似于在最先进的MX光束线常规获取的数据。