Suppr超能文献

传染病预测的场景设计:决策分析和实验设计概念的整合。

Scenario design for infectious disease projections: Integrating concepts from decision analysis and experimental design.

机构信息

U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Laurel, MD, USA.

The Pennsylvania State University, University Park, PA, USA.

出版信息

Epidemics. 2024 Jun;47:100775. doi: 10.1016/j.epidem.2024.100775. Epub 2024 May 24.

Abstract

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they might depend on potential interventions and critical uncertainties, with relevance to both decision makers and scientists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen substantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing important comparisons that can guide the choice of intervention, the prioritization of research topics, or public communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, then reflect on future advancements that could improve the design of scenarios in epidemiological settings.

摘要

在许多领域,情景建模已经成为探索长期预测以及它们如何依赖潜在干预和关键不确定性的重要工具,这对决策者和科学家都具有重要意义。在过去十年中,特别是在 COVID-19 大流行期间,流行病学领域在情景预测的使用方面有了实质性的增长。通常同时预测多个情景,从而可以进行重要的比较,以指导干预措施的选择、研究主题的优先级排序或公众沟通。情景设计是其能够回答重要问题的核心。在本文中,我们借鉴决策分析和实验统计设计领域的知识,提出了一个流行病学中的情景设计框架,该框架也与其他领域相关。我们确定了情景设计的六个不同的基本目的(决策制定、敏感性分析、态势感知、趋势扫描、预测和信息价值),并讨论了这些目的如何指导情景的结构。我们还讨论了情景设计的内容和过程的其他方面,包括所有设置以及特别是多模型集合预测的设置。作为一个说明性的案例研究,我们考察了美国 COVID-19 情景建模中心的前 17 轮情景,然后反思了未来可能改进流行病学情景设计的进展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验