Suppr超能文献

描述在收集多个传染病模型输出时信息的增益和损失。

Characterising information gains and losses when collecting multiple epidemic model outputs.

机构信息

London School of Hygiene & Tropical Medicine, London, UK.

University of Southern California, Los Angeles, USA.

出版信息

Epidemics. 2024 Jun;47:100765. doi: 10.1016/j.epidem.2024.100765. Epub 2024 Mar 27.

Abstract

BACKGROUND

Collaborative comparisons and combinations of epidemic models are used as policy-relevant evidence during epidemic outbreaks. In the process of collecting multiple model projections, such collaborations may gain or lose relevant information. Typically, modellers contribute a probabilistic summary at each time-step. We compared this to directly collecting simulated trajectories. We aimed to explore information on key epidemic quantities; ensemble uncertainty; and performance against data, investigating potential to continuously gain information from a single cross-sectional collection of model results.

METHODS

We compared projections from the European COVID-19 Scenario Modelling Hub. Five teams modelled incidence in Belgium, the Netherlands, and Spain. We compared July 2022 projections by incidence, peaks, and cumulative totals. We created a probabilistic ensemble drawn from all trajectories, and compared to ensembles from a median across each model's quantiles, or a linear opinion pool. We measured the predictive accuracy of individual trajectories against observations, using this in a weighted ensemble. We repeated this sequentially against increasing weeks of observed data. We evaluated these ensembles to reflect performance with varying observed data.

RESULTS

By collecting modelled trajectories, we showed policy-relevant epidemic characteristics. Trajectories contained a right-skewed distribution well represented by an ensemble of trajectories or a linear opinion pool, but not models' quantile intervals. Ensembles weighted by performance typically retained the range of plausible incidence over time, and in some cases narrowed this by excluding some epidemic shapes.

CONCLUSIONS

We observed several information gains from collecting modelled trajectories rather than quantile distributions, including potential for continuously updated information from a single model collection. The value of information gains and losses may vary with each collaborative effort's aims, depending on the needs of projection users. Understanding the differing information potential of methods to collect model projections can support the accuracy, sustainability, and communication of collaborative infectious disease modelling efforts.

摘要

背景

在疫情爆发期间,协作比较和组合流行模型被用作与政策相关的证据。在收集多个模型预测的过程中,这种协作可能会获得或失去相关信息。通常,建模人员会在每个时间步长提供概率汇总。我们将其与直接收集模拟轨迹进行了比较。我们旨在探索有关关键疫情数量的信息;集合不确定性;以及与数据的拟合性能,调查从单个横截面模型结果集合中不断获取信息的潜力。

方法

我们比较了欧洲 COVID-19 情景建模中心的预测结果。五个团队分别对比利时、荷兰和西班牙的发病率进行建模。我们比较了 2022 年 7 月的发病率、峰值和累积总数的预测结果。我们从所有轨迹中创建了一个概率集合,并将其与每个模型分位数中位数或线性意见池的集合进行了比较。我们使用观测数据的个体轨迹的预测准确性来测量,使用加权集合来测量。我们针对不断增加的观察周数重复此操作。我们评估了这些集合,以反映不同观测数据的性能。

结果

通过收集模拟轨迹,我们展示了与政策相关的疫情特征。轨迹呈现出右偏分布,这可以通过轨迹集合或线性意见池很好地表示,但不能通过模型的分位数区间表示。根据性能加权的集合通常会保留随时间推移的合理发病率范围,并且在某些情况下,通过排除某些疫情形态来缩小此范围。

结论

我们观察到从收集模型轨迹而不是分位数分布中获得了一些信息增益,包括从单个模型集合中不断更新信息的潜力。信息增益和损失的价值可能因每个协作努力的目标而异,具体取决于预测用户的需求。了解收集模型预测的方法的不同信息潜力可以支持协作传染病建模工作的准确性、可持续性和沟通。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b639/11196924/da337d9a51eb/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验