Formulation Research Laboratory, Pharmaceutical Science and Technology Unit, Eisai Co., Ltd.
Discovery Evidence Generation, Tsukuba Research Laboratories, Eisai Co., Ltd.
Chem Pharm Bull (Tokyo). 2024;72(6):529-539. doi: 10.1248/cpb.c24-00089.
Lipid nanoparticles (LNPs), used for mRNA vaccines against severe acute respiratory syndrome coronavirus 2, protect mRNA and deliver it into cells, making them an essential delivery technology for RNA medicine. The LNPs manufacturing process consists of two steps, the upstream process of preparing LNPs and the downstream process of removing ethyl alcohol (EtOH) and exchanging buffers. Generally, a microfluidic device is used in the upstream process, and a dialysis membrane is used in the downstream process. However, there are many parameters in the upstream and downstream processes, and it is difficult to determine the effects of variations in the manufacturing parameters on the quality of the LNPs and establish a manufacturing process to obtain high-quality LNPs. This study focused on manufacturing mRNA-LNPs using a microfluidic device. Extreme gradient boosting (XGBoost), which is a machine learning technique, identified EtOH concentration (flow rate ratio), buffer pH, and total flow rate as the process parameters that significantly affected the particle size and encapsulation efficiency. Based on these results, we derived the manufacturing conditions for different particle sizes (approximately 80 and 200 nm) of LNPs using Bayesian optimization. In addition, the particle size of the LNPs significantly affected the protein expression level of mRNA in cells. The findings of this study are expected to provide useful information that will enable the rapid and efficient development of mRNA-LNPs manufacturing processes using microfluidic devices.
脂质纳米颗粒(LNPs)被用于针对严重急性呼吸综合征冠状病毒 2 的 mRNA 疫苗,可保护 mRNA 并将其递送至细胞内,使其成为 RNA 药物的重要递送技术。LNPs 的制造过程包括两个步骤,即制备 LNPs 的上游过程和去除乙醇(EtOH)并交换缓冲液的下游过程。通常,在上游过程中使用微流控装置,在下游过程中使用透析膜。然而,在上游和下游过程中有许多参数,很难确定制造参数的变化对 LNPs 质量的影响,并建立制造工艺以获得高质量的 LNPs。本研究专注于使用微流控装置制造 mRNA-LNP。极端梯度提升(XGBoost)是一种机器学习技术,它确定 EtOH 浓度(流速比)、缓冲液 pH 值和总流速是显著影响颗粒大小和包封效率的工艺参数。基于这些结果,我们使用贝叶斯优化推导出了用于不同粒径(约 80nm 和 200nm)LNPs 的制造条件。此外,LNPs 的粒径显著影响 mRNA 在细胞中的蛋白质表达水平。本研究的结果有望提供有用的信息,从而能够快速有效地开发使用微流控装置的 mRNA-LNP 制造工艺。