Li Weihang, Wu Haitao, Huang Yue, Yao Yihang, Hou Yujia, Teng Qiancheng, Cai Minjie, Wu Jinrong
State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China.
Nanostructures for Electronics & Electromechanics Laboratory, School of Engineering, Westlake University, Hangzhou, 310024, P. R. China.
Angew Chem Int Ed Engl. 2024 Aug 26;63(35):e202408250. doi: 10.1002/anie.202408250. Epub 2024 Jul 22.
The growing concern regarding widespread plastic pollution has propelled the development of sustainable self-healing plastics. Although considerable efforts have been dedicated to fabricating self-healing plastics, achieving rapid healing at room temperature is extremely challenging. Herein, we have developed an ultra-fast-healing glassy polyurethane (UGPU) by designing a hyperbranched molecular structure with a high density of multiple hydrogen bonds (H-bonds) on compliant acyclic heterochains and introducing trace water to form water bridge across the fractured surfaces. The compliant acyclic heterochains allow the dense multiple hydrogen bonds to form a frozen network, enabling tensile strength of up to 70 MPa and storage modulus of 2.5 GPa. The hyperbranched structure can drive the reorganization of the H-bonding network through the high mobility of the branched chains and terminals, thereby leading to self-healing ability at room temperature. Intriguingly, the presence of trace water vapor facilitates the formation of activated layers and the rearrangement of networks across the fractured UGPU sections, thereby enabling ultra-fast self-healing at room temperature. Consequently, the restored tensile strength after healing for 1 minute achieves a historic-record of 26.4 MPa. Furthermore, the high transparency (>90 %) and ultra-fast healing property of UGPU make it an excellent candidate for advanced optical and structural materials.
对广泛存在的塑料污染日益增长的担忧推动了可持续自修复塑料的发展。尽管人们在制造自修复塑料方面付出了巨大努力,但在室温下实现快速修复极具挑战性。在此,我们通过在柔顺的无环杂链上设计具有高密度多重氢键(H键)的超支化分子结构,并引入微量水以在断裂表面形成水桥,开发出了一种超快修复的玻璃态聚氨酯(UGPU)。柔顺的无环杂链使密集的多重氢键形成一个冻结网络,使其拉伸强度高达70 MPa,储能模量为2.5 GPa。超支化结构可通过支链和末端的高迁移率驱动氢键网络的重组,从而在室温下具备自修复能力。有趣的是,微量水蒸气的存在促进了活化层的形成以及UGPU断裂部分网络的重排,从而在室温下实现超快自修复。因此,修复1分钟后的恢复拉伸强度达到了26.4 MPa的历史记录。此外,UGPU的高透明度(>90%)和超快修复性能使其成为先进光学和结构材料的理想候选材料。