Suppr超能文献

基于深度学习的肝移植后复发性肝癌通路为中心的分析方法。

Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation.

机构信息

Ajmera Transplant Centre, University Health Network, Toronto, ON, Canada.

Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.

出版信息

Hum Genomics. 2024 Jun 5;18(1):58. doi: 10.1186/s40246-024-00624-6.

Abstract

BACKGROUND

Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with recurrent HCC to identify differentially expressed genes (DEGs), the involved pathways, biological functions, and potential gene signatures of recurrent HCC post-transplant using deep machine learning (ML) methodology.

MATERIALS AND METHODS

We analyzed the transcriptomic profiles of primary and recurrent tumor samples from 7 pairs of patients who underwent LT. Following differential gene expression analysis, we performed pathway enrichment, gene ontology (GO) analyses and protein-protein interactions (PPIs) with top 10 hub gene networks. We also predicted the landscape of infiltrating immune cells using Cibersortx. We next develop pathway and GO term-based deep learning models leveraging primary tissue gene expression data from The Cancer Genome Atlas (TCGA) to identify gene signatures in recurrent HCC.

RESULTS

The PI3K/Akt signaling pathway and cytokine-mediated signaling pathway were particularly activated in HCC recurrence. The recurrent tumors exhibited upregulation of an immune-escape related gene, CD274, in the top 10 hub gene analysis. Significantly higher infiltration of monocytes and lower M1 macrophages were found in recurrent HCC tumors. Our deep learning approach identified a 20-gene signature in recurrent HCC. Amongst the 20 genes, through multiple analysis, IL6 was found to be significantly associated with HCC recurrence.

CONCLUSION

Our deep learning approach identified PI3K/Akt signaling as potentially regulating cytokine-mediated functions and the expression of immune escape genes, leading to alterations in the pattern of immune cell infiltration. In conclusion, IL6 was identified to play an important role in HCC recurrence.

摘要

背景

肝移植 (LT) 被作为治疗肝细胞癌 (HCC) 的方法,然而,15-20%的患者在移植后会出现复发,且复发往往具有侵袭性。在这项研究中,我们通过深度学习 (ML) 方法检测复发性 HCC 患者的转录组谱,以鉴定差异表达基因 (DEGs)、涉及的途径、生物学功能和潜在的移植后复发性 HCC 基因特征。

材料和方法

我们分析了 7 对接受 LT 的患者的原发和复发性肿瘤样本的转录组谱。在进行差异基因表达分析后,我们进行了通路富集、基因本体 (GO) 分析和 top10 枢纽基因网络的蛋白质-蛋白质相互作用 (PPIs)。我们还使用 Cibersortx 预测了浸润免疫细胞的景观。接下来,我们利用癌症基因组图谱 (TCGA) 中的原发性组织基因表达数据,开发了基于通路和 GO 术语的深度学习模型,以鉴定复发性 HCC 中的基因特征。

结果

PI3K/Akt 信号通路和细胞因子介导的信号通路在 HCC 复发中特别活跃。在 top10 枢纽基因分析中,复发性肿瘤中与免疫逃逸相关的基因 CD274 上调。在复发性 HCC 肿瘤中,单核细胞浸润显著增加,而 M1 巨噬细胞浸润减少。我们的深度学习方法在复发性 HCC 中鉴定出了一个 20 基因特征。在这 20 个基因中,通过多种分析发现,IL6 与 HCC 复发显著相关。

结论

我们的深度学习方法鉴定出 PI3K/Akt 信号可能调节细胞因子介导的功能和免疫逃逸基因的表达,导致免疫细胞浸润模式的改变。总之,IL6 被鉴定为在 HCC 复发中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4e2e/11151487/f7b63c3fe3cb/40246_2024_624_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验