Xu Jun, Wang Tengfei, Li Junjun, Wang Yong, Zhu Zhangxiang, Fu Xiao, Wang Junjie, Zhang Zhenglin, Cai Wei, Song Ruipeng, Hou Changlong, Yang Li-Zhuang, Wang Hongzhi, Wong Stephen T C, Li Hai
Hefei Cancer Hospital of CAS, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, P. R. China.
University of Science and Technology of China, Hefei, P. R. China.
NPJ Precis Oncol. 2025 Jun 14;9(1):185. doi: 10.1038/s41698-025-00979-6.
Early identification of unresectable hepatocellular carcinoma (HCC) patients who may benefit from immune checkpoint inhibitors (ICIs) is crucial for optimizing outcomes. Here, we developed a multimodal fusion (MMF) system integrating CT-derived deep learning features and clinical data to predict overall survival (OS) and progression-free survival (PFS). Using retrospective multicenter data (n = 859), the MMF combining an ensemble deep learning (Ensemble-DL) model with clinical variables achieved strong external validation performance (C-index: OS = 0.74, PFS = 0.69), outperforming radiomics (29.8% OS improvement), mRECIST (27.6% OS improvement), clinical benchmarks (C-index: OS = 0.67, p = 0.0011; PFS = 0.65, p = 0.033), and Ensemble-DL (C-index: OS = 0.69, p = 0.0028; PFS = 0.66, p = 0.044). The MMF system effectively stratified patients across clinical subgroups and demonstrated interpretability through activation maps and radiomic correlations. Differential gene expression analysis revealed enrichment of the PI3K/Akt pathway in patients identified by the MMF system. The MMF system provides an interpretable, clinically applicable approach to guide personalized ICI treatment in unresectable HCC.
早期识别可能从免疫检查点抑制剂(ICI)中获益的不可切除肝细胞癌(HCC)患者对于优化治疗结果至关重要。在此,我们开发了一种多模态融合(MMF)系统,该系统整合了CT衍生的深度学习特征和临床数据,以预测总生存期(OS)和无进展生存期(PFS)。利用回顾性多中心数据(n = 859),将集成深度学习(Ensemble-DL)模型与临床变量相结合的MMF实现了强大的外部验证性能(C指数:OS = 0.74,PFS = 0.69),优于放射组学(OS改善29.8%)、mRECIST(OS改善27.6%)、临床基准(C指数:OS = 0.67,p = 0.0011;PFS = 0.65,p = 0.033)以及Ensemble-DL(C指数:OS = 0.69,p = 0.0028;PFS = 0.66,p = 0.044)。MMF系统有效地对临床亚组中的患者进行了分层,并通过激活图和放射组学相关性证明了可解释性。差异基因表达分析显示,MMF系统识别出的患者中PI3K/Akt通路富集。MMF系统提供了一种可解释的、临床适用的方法,以指导不可切除HCC的个性化ICI治疗。