Nabera Abhinandan, José Martín Antonio, Istrate Robert, Pérez-Ramírez Javier, Guillén-Gosálbez Gonzalo
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich Vladimir Prelog Weg 1 Zürich 8093 Switzerland
Institute of Environmental Sciences (CML), Leiden University Einsteinweg 2 2333 CC Leiden The Netherlands.
Green Chem. 2024 Apr 18;26(11):6461-6469. doi: 10.1039/d4gc00392f. eCollection 2024 Jun 4.
New and enhanced processes will not be the only drivers toward a sustainable chemical industry. Implementing climate policies will impact all components of the chemical supply chain over the following decades, making improvements in energy generation, material extraction, or transportation contribute to reducing the overall impacts of chemical technologies. Including this synergistic effect when comparing technologies offers a clearer vision of their future potential and may allow researchers to support their sustainability propositions more strongly. Ammonia and methanol production account for more than fifty percent of the CO emissions in this industry and are, therefore, excellent case studies. This work performs a prospective life cycle assessment until 2050 for fossil, blue, wind, and solar-based technologies under climate policies aiming to limit the global temperature rise to 1.5 °C, 2 °C, or 3.5 °C. The first finding is the inability of fossil-based routes to reduce their CO emissions beyond 10% by 2050 without tailored decarbonisation strategies, regardless of the chemical and climate policy considered. In contrast, green routes may produce chemicals with around 90% fewer emissions than today and even with net negative emissions (on a cradle-to-gate basis), as in the case of methanol (up to -1.4 kg CO-eq per kg), mainly due to the contributions of technology development and increasing penetration of renewable energies. Overall, the combined production of these chemicals could be net-zero by 2050 despite their predicted two to fivefold increase in demand. Lastly, we propose a roadmap for progressive implementation by 2050 of green routes in 26 regions worldwide, applying the criterion of at least 80% reduction in climate change impacts when compared to their fossil alternatives. Furthermore, an exploratory prospective techno-economic assessment showed that by 2050, green routes could become more economically attractive. This work offers quantitative arguments to reinforce research, development, and policymaking efforts on green chemical routes reliant on renewable energies.
新的和改进的工艺并非推动化学工业可持续发展的唯一因素。在未来几十年里,实施气候政策将影响化学供应链的各个环节,提高能源生产、材料提取或运输方面的效率有助于减少化学技术的整体影响。在比较不同技术时考虑这种协同效应,能更清晰地展现它们未来的潜力,也可能使研究人员更有力地支持其可持续发展主张。氨和甲醇生产占该行业二氧化碳排放量的一半以上,因此是绝佳的案例研究对象。本研究针对化石、蓝氢、风能和太阳能技术,在旨在将全球气温上升限制在1.5℃、2℃或3.5℃的气候政策下,进行了到2050年的前瞻性生命周期评估。第一个发现是,无论考虑何种化学品和气候政策,如果没有量身定制的脱碳战略,基于化石的路线到2050年将无法将其二氧化碳排放量减少超过10%。相比之下,绿色路线生产的化学品排放量可能比现在减少约90%,甚至实现净负排放(从摇篮到大门阶段),比如甲醇(每千克高达-1.4千克二氧化碳当量),这主要归功于技术发展和可再生能源渗透率的提高。总体而言,尽管预计这些化学品的需求将增长两到五倍,但到2050年它们的综合生产可能实现净零排放。最后,我们提出了一个到2050年在全球26个地区逐步实施绿色路线的路线图,采用与化石替代方案相比气候变化影响至少降低80%的标准。此外,一项探索性的前瞻性技术经济评估表明,到2050年,绿色路线可能在经济上更具吸引力。这项工作提供了定量论据,以加强对依赖可再生能源的绿色化学路线的研究、开发和政策制定工作。