Suppr超能文献

基于潜在扩散模型的 MRI 超分辨率可增强轻度认知障碍的预后预测和阿尔茨海默病的分类。

Latent diffusion model-based MRI superresolution enhances mild cognitive impairment prognostication and Alzheimer's disease classification.

机构信息

Interdisciplinary Program in Bioengineering, Seoul National University Graduate School, Seoul 03080, Republic of Korea.

Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea.

出版信息

Neuroimage. 2024 Aug 1;296:120663. doi: 10.1016/j.neuroimage.2024.120663. Epub 2024 Jun 4.

Abstract

INTRODUCTION

Timely diagnosis and prognostication of Alzheimer's disease (AD) and mild cognitive impairment (MCI) are pivotal for effective intervention. Artificial intelligence (AI) in neuroradiology may aid in such appropriate diagnosis and prognostication. This study aimed to evaluate the potential of novel diffusion model-based AI for enhancing AD and MCI diagnosis through superresolution (SR) of brain magnetic resonance (MR) images.

METHODS

1.5T brain MR scans of patients with AD or MCI and healthy controls (NC) from Alzheimer's Disease Neuroimaging Initiative 1 (ADNI1) were superresolved to 3T using a novel diffusion model-based generative AI (d3T*) and a convolutional neural network-based model (c3T*). Comparisons of image quality to actual 1.5T and 3T MRI were conducted based on signal-to-noise ratio (SNR), naturalness image quality evaluator (NIQE), and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE). Voxel-based volumetric analysis was then conducted to study whether 3T* images offered more accurate volumetry than 1.5T images. Binary and multiclass classifications of AD, MCI, and NC were conducted to evaluate whether 3T* images offered superior AD classification performance compared to actual 1.5T MRI. Moreover, CNN-based classifiers were used to predict conversion of MCI to AD, to evaluate the prognostication performance of 3T* images. The classification performances were evaluated using accuracy, sensitivity, specificity, F1 score, Matthews correlation coefficient (MCC), and area under the receiver-operating curves (AUROC).

RESULTS

Analysis of variance (ANOVA) detected significant differences in image quality among the 1.5T, c3T*, d3T*, and 3T groups across all metrics. Both c3T* and d3T* showed superior image quality compared to 1.5T MRI in NIQE and BRISQUE with statistical significance. While the hippocampal volumes measured in 3T* and 3T images were not significantly different, the hippocampal volume measured in 1.5T images showed significant difference. 3T*-based AD classifications showed superior performance across all performance metrics compared to 1.5T-based AD classification. Classification performance between d3T* and actual 3T was not significantly different. 3T* images offered superior accuracy in predicting the conversion of MCI to AD than 1.5T images did.

CONCLUSIONS

The diffusion model-based MRI SR enhances the resolution of brain MR images, significantly improving diagnostic and prognostic accuracy for AD and MCI. Superresolved 3T* images closely matched actual 3T MRIs in quality and volumetric accuracy, and notably improved the prediction performance of conversion from MCI to AD.

摘要

简介

及时诊断和预测阿尔茨海默病(AD)和轻度认知障碍(MCI)对于有效干预至关重要。神经放射学中的人工智能(AI)可能有助于进行这种适当的诊断和预后评估。本研究旨在通过对脑磁共振(MR)图像进行超分辨率(SR)来评估基于新型扩散模型的 AI 增强 AD 和 MCI 诊断的潜力。

方法

使用基于新型扩散模型的生成式 AI(d3T*)和基于卷积神经网络的模型(c3T*),将阿尔茨海默病神经影像学倡议 1(ADNI1)中 AD 或 MCI 患者和健康对照者(NC)的 1.5T 脑 MR 扫描超分辨率到 3T。基于信噪比(SNR)、自然图像质量评估器(NIQE)和盲/无参考图像空间质量评估器(BRISQUE)对图像质量与实际 1.5T 和 3T MRI 的比较。然后进行基于体素的容积分析,以研究 3T图像是否比 1.5T 图像提供更准确的容积测量值。进行 AD、MCI 和 NC 的二分类和多分类分类,以评估 3T图像与实际 1.5T MRI 相比是否具有更高的 AD 分类性能。此外,还使用基于 CNN 的分类器来预测 MCI 向 AD 的转化,以评估 3T*图像的预后性能。使用准确性、敏感性、特异性、F1 分数、马修斯相关系数(MCC)和接收器操作特征曲线下的面积(AUROC)来评估分类性能。

结果

方差分析(ANOVA)检测到所有指标中,1.5T、c3T*、d3T和 3T 组之间的图像质量存在显著差异。c3T和 d3T在 NIQE 和 BRISQUE 中均显示出比 1.5T MRI 更好的图像质量,且具有统计学意义。虽然 3T和 3T 图像测量的海马体体积没有显著差异,但 1.5T 图像测量的海马体体积存在显著差异。基于 3T的 AD 分类在所有性能指标上均表现出优于基于 1.5T 的 AD 分类的性能。d3T和实际 3T 之间的分类性能没有显著差异。3T*图像在预测 MCI 向 AD 的转化方面的准确性优于 1.5T 图像。

结论

基于扩散模型的 MRI SR 提高了脑 MRI 的分辨率,显著提高了 AD 和 MCI 的诊断和预后准确性。超分辨率 3T*图像在质量和容积准确性方面与实际 3T MRI 非常匹配,并且显著提高了从 MCI 向 AD 转化的预测性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验