Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, 72 E. Concord Street, Evans 636, Boston, MA, 02118, USA.
Department of Computer Science, College of Arts & Sciences, Boston University, Boston, MA, USA.
Alzheimers Res Ther. 2021 Mar 14;13(1):60. doi: 10.1186/s13195-021-00797-5.
Generative adversarial networks (GAN) can produce images of improved quality but their ability to augment image-based classification is not fully explored. We evaluated if a modified GAN can learn from magnetic resonance imaging (MRI) scans of multiple magnetic field strengths to enhance Alzheimer's disease (AD) classification performance.
T1-weighted brain MRI scans from 151 participants of the Alzheimer's Disease Neuroimaging Initiative (ADNI), who underwent both 1.5-Tesla (1.5-T) and 3-Tesla imaging at the same time were selected to construct a GAN model. This model was trained along with a three-dimensional fully convolutional network (FCN) using the generated images (3T*) as inputs to predict AD status. Quality of the generated images was evaluated using signal to noise ratio (SNR), Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) and Natural Image Quality Evaluator (NIQE). Cases from the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL, n = 107) and the National Alzheimer's Coordinating Center (NACC, n = 565) were used for model validation.
The 3T*-based FCN classifier performed better than the FCN model trained using the 1.5-T scans. Specifically, the mean area under curve increased from 0.907 to 0.932, from 0.934 to 0.940, and from 0.870 to 0.907 on the ADNI test, AIBL, and NACC datasets, respectively. Additionally, we found that the mean quality of the generated (3T*) images was consistently higher than the 1.5-T images, as measured using SNR, BRISQUE, and NIQE on the validation datasets.
This study demonstrates a proof of principle that GAN frameworks can be constructed to augment AD classification performance and improve image quality.
生成对抗网络(GAN)可以生成质量更高的图像,但它们增强基于图像的分类的能力尚未得到充分探索。我们评估了一种经过修改的 GAN 是否可以从多个磁场强度的磁共振成像(MRI)扫描中学习,以增强阿尔茨海默病(AD)分类性能。
从阿尔茨海默病神经影像学倡议(ADNI)的 151 名参与者中选择了 T1 加权脑 MRI 扫描,这些参与者同时进行了 1.5-Tesla(1.5-T)和 3-Tesla 成像,以构建 GAN 模型。该模型与三维全卷积网络(FCN)一起使用生成的图像(3T*)作为输入进行训练,以预测 AD 状态。使用信噪比(SNR)、盲/无参考图像空间质量评估器(BRISQUE)和自然图像质量评估器(NIQE)评估生成图像的质量。来自澳大利亚成像、生物标志物和生活方式旗舰老化研究(AIBL,n=107)和国家阿尔茨海默病协调中心(NACC,n=565)的病例用于模型验证。
基于 3T的 FCN 分类器的性能优于使用 1.5-T 扫描训练的 FCN 模型。具体而言,在 ADNI 测试、AIBL 和 NACC 数据集上,平均曲线下面积分别从 0.907 增加到 0.932、从 0.934 增加到 0.940、从 0.870 增加到 0.907。此外,我们发现,使用 SNR、BRISQUE 和 NIQE 在验证数据集上测量,生成的(3T)图像的平均质量始终高于 1.5-T 图像。
这项研究证明了一个原理,即可以构建 GAN 框架来增强 AD 分类性能和提高图像质量。