Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
Int J Biol Macromol. 2024 Jul;273(Pt 2):132898. doi: 10.1016/j.ijbiomac.2024.132898. Epub 2024 Jun 4.
This study explored the photocatalytic hydrogen evolution reaction (HER) using novel biohydrogel composites comprising chitosan, and a photocatalyst consisting in TiO P25 decorated with Au and/or Cu mono- and bimetallic nanoparticles (NPs) to boost its optical and catalytic properties. Low loads of Cu and Au (1 mol%) were incorporated onto TiO via a green photodeposition methodology. Characterization techniques confirmed the incorporation of decoration metals as well as improvements in the light absorption properties in the visible light interval (λ > 390 nm) and electron transfer capability of the semiconductors. Thereafter, Au and/or Cu NP-supported TiO were incorporated into chitosan-based physically crosslinked hydrogels revealing significant interactions between chitosan functional groups (hydroxyls, amines and amides) with the NPs to ensure its encapsulation. These materials were evaluated as photocatalysts for the HER using water and methanol mixtures under simulated sunlight and visible light irradiation. Sample CuAuTiO/ChTPP exhibited a maximum hydrogen generation of 1790 μmol g h under simulated sunlight irradiation, almost 12-folds higher compared with TiO/ChTPP. Also, the nanocomposites revealed a similar tendency under visible light with a maximum hydrogen production of 590 μmol g h. These results agree with the efficiency of photoinduced charge separation revealed by transient photocurrent and EIS.
本研究探索了使用包含壳聚糖的新型生物水凝胶复合材料的光催化析氢反应(HER),其中包含 TiO2 P25 负载的 Au 和/或 Cu 单金属和双金属纳米粒子(NPs),以提高其光学和催化性能。通过绿色光电沉积方法将低负载量的 Cu 和 Au(1 mol%)掺入 TiO2 中。表征技术证实了装饰金属的掺入以及在可见光区(λ>390 nm)的光吸收特性和半导体的电子转移能力的提高。此后,将 Au 和/或 Cu NP 负载的 TiO2 掺入壳聚糖基物理交联水凝胶中,揭示了壳聚糖官能团(羟基、胺和酰胺)与 NPs 之间存在显著相互作用,以确保其封装。这些材料被评估为在模拟太阳光和可见光照射下用于 HER 的光催化剂,使用水和甲醇混合物。在模拟太阳光照射下,样品 CuAuTiO/ChTPP 的最大氢气生成量为 1790 μmol g h-1,几乎是 TiO2/ChTPP 的 12 倍。此外,在可见光下,纳米复合材料也呈现出类似的趋势,最大产氢量为 590 μmol g h-1。这些结果与瞬态光电流和 EIS 揭示的光诱导电荷分离效率一致。