Zhang Yu, Yin Kunlong, Tang Yang, Xiao Lili
Central-South Architectural Design Institute Co., Ltd. (CSADI), Wuhan, China.
Department of Engineering, China University of Geosciences (Wuhan), Wuhan, China.
Sci Rep. 2024 Jun 6;14(1):13053. doi: 10.1038/s41598-024-63010-1.
Impulse waves are generated by rapid subaerial mass movements including landslides, avalanches and glacier break-offs, which pose a potential risk to public facilities and residents along the shore of natural lakes or engineered reservoirs. Therefore, the prediction and assessment of impulse waves are of considerable importance to practical engineering. Tsunami Squares, as a meshless numerical method based on a hybrid Eulerian-Lagrangian algorithm, have focused on the simulation of landslide-generated impulse waves. An updated numerical scheme referred to as Tsunami Squares Leapfrog, was developed which contains a new smooth function able to achieve space and time convergence tests as well as the Leapfrog time integration method enabling second-order accuracy. The updated scheme shows improved performance due to a lower wave decay rate per unit propagation distance compared to the original implementation of Tsunami Squares. A systematic benchmark testing of the updated scheme was conducted by simulating the run-up, reflection and overland flow of solitary waves along a slope for various initial wave amplitudes, water depths and slope angles. For run-up, the updated scheme shows good performance when the initial relative wave amplitude is smaller than 0.4. Otherwise, the model tends to underestimate the run-up height for mild slopes, while an overestimation is observed for steeper slopes. With respect to overland flow, the prediction error of the maximum flow height can be limited to ± 50% within a 90% confidence interval. However, the prediction of the front propagation velocity can only be controlled to ± 100% within a 90% confidence interval. Furthermore, a sensitivity analysis of the dynamic friction coefficient of water was performed and a suggested range from 0.01 to 0.1 was given for reference.
脉冲波是由包括山体滑坡、雪崩和冰川崩塌在内的快速陆面质量运动产生的,这对天然湖泊或人工水库沿岸的公共设施和居民构成潜在风险。因此,脉冲波的预测和评估对实际工程具有相当重要的意义。海啸方块作为一种基于混合欧拉-拉格朗日算法的无网格数值方法,专注于模拟山体滑坡产生的脉冲波。开发了一种更新的数值方案,称为海啸方块蛙跳法,它包含一个新的光滑函数,能够实现空间和时间收敛测试,以及具有二阶精度的蛙跳时间积分方法。与海啸方块的原始实现相比,更新后的方案由于单位传播距离的波衰减率较低,性能有所提高。通过模拟不同初始波幅、水深和坡度的孤立波沿斜坡的爬升、反射和陆面水流,对更新后的方案进行了系统的基准测试。对于爬升,当初始相对波幅小于0.4时,更新后的方案表现良好。否则,对于缓坡,模型往往低估爬升高度,而对于陡坡,则观察到高估现象。对于陆面水流,在90%置信区间内,最大水流高度的预测误差可限制在±50%以内。然而,在90%置信区间内,前沿传播速度的预测只能控制在±100%以内。此外,还对水的动摩擦系数进行了敏感性分析,并给出了0.01至0.1的建议范围以供参考。