Lazebnik Teddy, Bunimovich-Mendrazitsky Svetlana
Department of Cancer Biology, Cancer Institute, University College London, London, United Kingdom.
Department of Mathematics, Ariel University, Ariel, Israel.
Front Med (Lausanne). 2024 May 23;11:1388702. doi: 10.3389/fmed.2024.1388702. eCollection 2024.
Lung cancer is a global leading cause of cancer-related deaths, and metastasis profoundly influences treatment outcomes. The limitations of conventional imaging in detecting small metastases highlight the crucial need for advanced diagnostic approaches.
This study developed a bioclinical model using three-dimensional CT scans to predict the spatial spread of lung cancer metastasis. Utilizing a three-layer biological model, we identified regions with a high probability of metastasis colonization and validated the model on real-world data from 10 patients.
The validated bioclinical model demonstrated a promising 74% accuracy in predicting metastasis locations, showcasing the potential of integrating biophysical and machine learning models. These findings underscore the significance of a more comprehensive approach to lung cancer diagnosis and treatment.
This study's integration of biophysical and machine learning models contributes to advancing lung cancer diagnosis and treatment, providing nuanced insights for informed decision-making.
肺癌是全球癌症相关死亡的主要原因,转移对治疗结果有深远影响。传统成像在检测小转移灶方面的局限性凸显了对先进诊断方法的迫切需求。
本研究开发了一种使用三维CT扫描的生物临床模型,以预测肺癌转移的空间扩散。利用三层生物模型,我们确定了转移灶定植概率高的区域,并在10名患者的真实世界数据上对该模型进行了验证。
经过验证的生物临床模型在预测转移位置方面显示出有前景的74%的准确率,展示了整合生物物理和机器学习模型的潜力。这些发现强调了采用更全面方法进行肺癌诊断和治疗的重要性。
本研究将生物物理和机器学习模型相结合,有助于推动肺癌的诊断和治疗,为明智的决策提供细致入微的见解。