Suppr超能文献

基于深度学习的脑磁共振成像自动扫描平面定位

Deep learning-based automated scan plane positioning for brain magnetic resonance imaging.

作者信息

Zhu Gaojie, Shen Xiongjie, Sun Zhiguo, Xiao Zhongjie, Zhong Junjie, Yin Zhe, Li Shengxiang, Guo Hua

机构信息

Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.

Anke High-tech Co., Ltd., Shenzhen, China.

出版信息

Quant Imaging Med Surg. 2024 Jun 1;14(6):4015-4030. doi: 10.21037/qims-23-1740. Epub 2024 Apr 30.

Abstract

BACKGROUND

Manual planning of scans in clinical magnetic resonance imaging (MRI) exhibits poor accuracy, lacks consistency, and is time-consuming. Meanwhile, classical automated scan plane positioning methods that rely on certain assumptions are not accurate or stable enough, and are computationally inefficient for practical application scenarios. This study aims to develop and evaluate an effective, reliable, and accurate deep learning-based framework that incorporates prior physical knowledge for automatic head scan plane positioning in MRI.

METHODS

A deep learning-based end-to-end automated scan plane positioning framework has been developed for MRI head scans. Our model takes a three-dimensional (3D) pre-scan image input, utilizing a cascaded 3D convolutional neural network to detect anatomical landmarks from coarse to fine. And then, with the determined landmarks, accurate scan plane localization can be achieved. A multi-scale spatial information fusion module was employed to aggregate high- and low-resolution features, combined with physically meaningful point regression loss (PRL) function and direction regression loss (DRL) function. Meanwhile, we simulate complex clinical scenarios to design data augmentation strategies.

RESULTS

Our proposed approach shows good performance on a clinically wide range of 229 MRI head scans, with a point-to-point absolute error (PAE) of 0.872 mm, a point-to-point relative error (PRE) of 0.10%, and an average angular error (AAE) of 0.502°, 0.381°, and 0.675° for the sagittal, transverse, and coronal planes, respectively.

CONCLUSIONS

The proposed deep learning-based automated scan plane positioning shows high efficiency, accuracy and robustness when evaluated on varied clinical head MRI scans with differences in positioning, contrast, noise levels and pathologies.

摘要

背景

临床磁共振成像(MRI)中手动扫描规划准确性差、缺乏一致性且耗时。同时,依赖某些假设的传统自动扫描平面定位方法不够准确或稳定,在实际应用场景中计算效率低下。本研究旨在开发并评估一种基于深度学习的有效、可靠且准确的框架,该框架融合先验物理知识用于MRI头部扫描平面的自动定位。

方法

已开发出一种基于深度学习的端到端自动扫描平面定位框架用于MRI头部扫描。我们的模型输入三维(3D)预扫描图像,利用级联3D卷积神经网络从粗到细检测解剖标志点。然后,根据确定的标志点可实现准确的扫描平面定位。采用多尺度空间信息融合模块聚合高分辨率和低分辨率特征,并结合具有物理意义的点回归损失(PRL)函数和方向回归损失(DRL)函数。同时,我们模拟复杂临床场景来设计数据增强策略。

结果

我们提出的方法在临床上广泛的229例MRI头部扫描中表现良好,矢状面、横断面和冠状面的点对点绝对误差(PAE)分别为0.872毫米、点对点相对误差(PRE)为0.10%,平均角度误差(AAE)分别为0.502°、0.381°和0.675°。

结论

在具有不同定位、对比度、噪声水平和病变的各种临床头部MRI扫描上进行评估时,所提出的基于深度学习的自动扫描平面定位显示出高效率、准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b133/11151238/5f2b7112d146/qims-14-06-4015-f1.jpg

相似文献

1
Deep learning-based automated scan plane positioning for brain magnetic resonance imaging.
Quant Imaging Med Surg. 2024 Jun 1;14(6):4015-4030. doi: 10.21037/qims-23-1740. Epub 2024 Apr 30.
2
Automated Placement of Scan and Pre-Scan Volumes for Breast MRI Using a Convolutional Neural Network.
Tomography. 2023 May 10;9(3):967-980. doi: 10.3390/tomography9030079.
7
Automated segmentation of the human supraclavicular fat depot via deep neural network in water-fat separated magnetic resonance images.
Quant Imaging Med Surg. 2023 Jul 1;13(7):4699-4715. doi: 10.21037/qims-22-304. Epub 2023 Mar 14.
8
Implementation and prospective clinical validation of AI-based planning and shimming techniques in cardiac MRI.
Med Phys. 2022 Jan;49(1):129-143. doi: 10.1002/mp.15327. Epub 2021 Nov 23.
9
Synthetic cranial MRI from 3D optical surface scans using deep learning for radiation therapy treatment planning.
Phys Eng Sci Med. 2023 Mar;46(1):367-375. doi: 10.1007/s13246-023-01229-4. Epub 2023 Feb 8.
10
MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
Eur Radiol. 2023 Apr;33(4):2686-2698. doi: 10.1007/s00330-022-09243-y. Epub 2022 Nov 15.

本文引用的文献

1
Asymmetric Ensemble of Asymmetric U-Net Models for Brain Tumor Segmentation With Uncertainty Estimation.
Front Neurol. 2021 Sep 30;12:609646. doi: 10.3389/fneur.2021.609646. eCollection 2021.
2
Deep Learning-based Prescription of Cardiac MRI Planes.
Radiol Artif Intell. 2019 Nov 27;1(6):e180069. doi: 10.1148/ryai.2019180069.
3
HeadLocNet: Deep convolutional neural networks for accurate classification and multi-landmark localization of head CTs.
Med Image Anal. 2020 Apr;61:101659. doi: 10.1016/j.media.2020.101659. Epub 2020 Jan 28.
4
Integrating spatial configuration into heatmap regression based CNNs for landmark localization.
Med Image Anal. 2019 May;54:207-219. doi: 10.1016/j.media.2019.03.007. Epub 2019 Mar 25.
5
Deep Learning: A Primer for Radiologists.
Radiographics. 2017 Nov-Dec;37(7):2113-2131. doi: 10.1148/rg.2017170077.
6
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
7
Automatic slice alignment method for cardiac magnetic resonance imaging.
MAGMA. 2013 Oct;26(5):451-61. doi: 10.1007/s10334-012-0361-4. Epub 2013 Jan 26.
8
3D Slicer as an image computing platform for the Quantitative Imaging Network.
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
9
Automatic view planning for cardiac MRI acquisition.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):479-86. doi: 10.1007/978-3-642-23626-6_59.
10
Robust automatic knee MR slice positioning through redundant and hierarchical anatomy detection.
IEEE Trans Med Imaging. 2011 Dec;30(12):2087-100. doi: 10.1109/TMI.2011.2162634. Epub 2011 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验