Zhu Gaojie, Shen Xiongjie, Sun Zhiguo, Xiao Zhongjie, Zhong Junjie, Yin Zhe, Li Shengxiang, Guo Hua
Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China.
Anke High-tech Co., Ltd., Shenzhen, China.
Quant Imaging Med Surg. 2024 Jun 1;14(6):4015-4030. doi: 10.21037/qims-23-1740. Epub 2024 Apr 30.
Manual planning of scans in clinical magnetic resonance imaging (MRI) exhibits poor accuracy, lacks consistency, and is time-consuming. Meanwhile, classical automated scan plane positioning methods that rely on certain assumptions are not accurate or stable enough, and are computationally inefficient for practical application scenarios. This study aims to develop and evaluate an effective, reliable, and accurate deep learning-based framework that incorporates prior physical knowledge for automatic head scan plane positioning in MRI.
A deep learning-based end-to-end automated scan plane positioning framework has been developed for MRI head scans. Our model takes a three-dimensional (3D) pre-scan image input, utilizing a cascaded 3D convolutional neural network to detect anatomical landmarks from coarse to fine. And then, with the determined landmarks, accurate scan plane localization can be achieved. A multi-scale spatial information fusion module was employed to aggregate high- and low-resolution features, combined with physically meaningful point regression loss (PRL) function and direction regression loss (DRL) function. Meanwhile, we simulate complex clinical scenarios to design data augmentation strategies.
Our proposed approach shows good performance on a clinically wide range of 229 MRI head scans, with a point-to-point absolute error (PAE) of 0.872 mm, a point-to-point relative error (PRE) of 0.10%, and an average angular error (AAE) of 0.502°, 0.381°, and 0.675° for the sagittal, transverse, and coronal planes, respectively.
The proposed deep learning-based automated scan plane positioning shows high efficiency, accuracy and robustness when evaluated on varied clinical head MRI scans with differences in positioning, contrast, noise levels and pathologies.
临床磁共振成像(MRI)中手动扫描规划准确性差、缺乏一致性且耗时。同时,依赖某些假设的传统自动扫描平面定位方法不够准确或稳定,在实际应用场景中计算效率低下。本研究旨在开发并评估一种基于深度学习的有效、可靠且准确的框架,该框架融合先验物理知识用于MRI头部扫描平面的自动定位。
已开发出一种基于深度学习的端到端自动扫描平面定位框架用于MRI头部扫描。我们的模型输入三维(3D)预扫描图像,利用级联3D卷积神经网络从粗到细检测解剖标志点。然后,根据确定的标志点可实现准确的扫描平面定位。采用多尺度空间信息融合模块聚合高分辨率和低分辨率特征,并结合具有物理意义的点回归损失(PRL)函数和方向回归损失(DRL)函数。同时,我们模拟复杂临床场景来设计数据增强策略。
我们提出的方法在临床上广泛的229例MRI头部扫描中表现良好,矢状面、横断面和冠状面的点对点绝对误差(PAE)分别为0.872毫米、点对点相对误差(PRE)为0.10%,平均角度误差(AAE)分别为0.502°、0.381°和0.675°。
在具有不同定位、对比度、噪声水平和病变的各种临床头部MRI扫描上进行评估时,所提出的基于深度学习的自动扫描平面定位显示出高效率、准确性和鲁棒性。