Suppr超能文献

使用卷积神经网络自动放置乳腺 MRI 的扫描和预扫描体积。

Automated Placement of Scan and Pre-Scan Volumes for Breast MRI Using a Convolutional Neural Network.

机构信息

Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA.

Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA.

出版信息

Tomography. 2023 May 10;9(3):967-980. doi: 10.3390/tomography9030079.

Abstract

Graphically prescribed patient-specific imaging volumes and local pre-scan volumes are routinely placed by MRI technologists to optimize image quality. However, manual placement of these volumes by MR technologists is time-consuming, tedious, and subject to intra- and inter-operator variability. Resolving these bottlenecks is critical with the rise in abbreviated breast MRI exams for screening purposes. This work proposes an automated approach for the placement of scan and pre-scan volumes for breast MRI. Anatomic 3-plane scout image series and associated scan volumes were retrospectively collected from 333 clinical breast exams acquired on 10 individual MRI scanners. Bilateral pre-scan volumes were also generated and reviewed in consensus by three MR physicists. A deep convolutional neural network was trained to predict both the scan and pre-scan volumes from the 3-plane scout images. The agreement between the network-predicted volumes and the clinical scan volumes or physicist-placed pre-scan volumes was evaluated using the intersection over union, the absolute distance between volume centers, and the difference in volume sizes. The scan volume model achieved a median 3D intersection over union of 0.69. The median error in scan volume location was 2.7 cm and the median size error was 2%. The median 3D intersection over union for the pre-scan placement was 0.68 with no significant difference in mean value between the left and right pre-scan volumes. The median error in the pre-scan volume location was 1.3 cm and the median size error was -2%. The average estimated uncertainty in positioning or volume size for both models ranged from 0.2 to 3.4 cm. Overall, this work demonstrates the feasibility of an automated approach for the placement of scan and pre-scan volumes based on a neural network model.

摘要

图形规定的患者特定成像体积和局部预扫描体积通常由 MRI 技术人员放置,以优化图像质量。然而,MR 技术人员手动放置这些体积既耗时又乏味,并且容易受到操作人员内部和操作人员之间的变化的影响。随着缩短的乳房 MRI 检查用于筛查目的的增加,解决这些瓶颈至关重要。这项工作提出了一种用于乳房 MRI 扫描和预扫描体积放置的自动化方法。从 10 台个人 MRI 扫描仪上获得的 333 项临床乳房检查中回顾性收集了解剖 3 平面侦察图像系列和相关的扫描体积。还通过三位磁共振物理学家生成并一致审查了双侧预扫描体积。训练了一个深度卷积神经网络,以便从 3 平面侦察图像中预测扫描和预扫描体积。使用交并比、体积中心之间的绝对距离和体积大小差异评估网络预测的体积与临床扫描体积或物理学家放置的预扫描体积之间的一致性。扫描体积模型的 3D 交并比中位数为 0.69。扫描体积位置的中位数误差为 2.7 厘米,体积大小的中位数误差为 2%。预扫描放置的 3D 交并比中位数为 0.68,左右预扫描体积的平均值没有显著差异。预扫描体积位置的中位数误差为 1.3 厘米,体积大小的中位数误差为-2%。这两个模型的位置或体积大小的平均估计不确定性从 0.2 到 3.4 厘米不等。总体而言,这项工作证明了基于神经网络模型自动放置扫描和预扫描体积的方法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10f5/10204486/40ab0af1ced1/tomography-09-00079-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验