Wallace Hailey M, Yang Hyunjun, Tan Sophia, Pan Henry S, Yang Rose, Xu Junyi, Jo Hyunil, Condello Carlo, Polizzi Nicholas F, DeGrado William F
Department of Pharmaceutical Chemistry, The Cardiovascular Research Institution, University of California San Francisco CA 94158 USA
Institute for Neurodegenerative Diseases, University of California San Francisco CA 94143 USA.
Chem Sci. 2024 Mar 30;15(22):8414-8421. doi: 10.1039/d3sc06245g. eCollection 2024 Jun 5.
Insoluble amyloids rich in cross-β fibrils are observed in a number of neurodegenerative diseases. Depending on the clinicopathology, the amyloids can adopt distinct supramolecular assemblies, termed conformational strains. However, rapid methods to study amyloids in a conformationally specific manner are lacking. We introduce a novel computational method for design of peptides that tile the surface of α-synuclein fibrils in a conformationally specific manner. Our method begins by identifying surfaces that are unique to the conformational strain of interest, which becomes a "target backbone" for the design of a peptide binder. Next, we interrogate structures in the PDB with high geometric complementarity to the target. Then, we identify secondary structural motifs that interact with this target backbone in a favorable, highly occurring geometry. This method produces monomeric helical motifs with a favorable geometry for interaction with the strands of the underlying amyloid. Each motif is then symmetrically replicated to form a monolayer that tiles the amyloid surface. Finally, amino acid sequences of the peptide binders are computed to provide a sequence with high geometric and physicochemical complementarity to the target amyloid. This method was applied to a conformational strain of α-synuclein fibrils, resulting in a peptide with high specificity for the target relative to other amyloids formed by α-synuclein, tau, or Aβ40. This designed peptide also markedly slowed the formation of α-synuclein amyloids. Overall, this method offers a new tool for examining conformational strains of amyloid proteins.
在许多神经退行性疾病中都观察到富含交叉β纤维的不溶性淀粉样蛋白。根据临床病理学的不同,淀粉样蛋白可以形成不同的超分子组装体,即构象菌株。然而,目前缺乏以构象特异性方式研究淀粉样蛋白的快速方法。我们介绍了一种新的计算方法,用于设计以构象特异性方式平铺α-突触核蛋白纤维表面的肽。我们的方法首先识别感兴趣的构象菌株特有的表面,这成为设计肽结合剂的“目标骨架”。接下来,我们在蛋白质数据银行(PDB)中查询与目标具有高度几何互补性的结构。然后,我们识别以有利的、高度出现的几何形状与该目标骨架相互作用的二级结构基序。这种方法产生具有与潜在淀粉样蛋白链相互作用的有利几何形状的单体螺旋基序。然后将每个基序对称复制以形成平铺淀粉样蛋白表面的单层。最后,计算肽结合剂的氨基酸序列,以提供与目标淀粉样蛋白具有高度几何和物理化学互补性的序列。该方法应用于α-突触核蛋白纤维的一种构象菌株,相对于由α-突触核蛋白、tau或Aβ40形成的其他淀粉样蛋白,产生了对目标具有高特异性的肽。这种设计的肽也显著减缓了α-突触核蛋白淀粉样蛋白的形成。总体而言,该方法为研究淀粉样蛋白的构象菌株提供了一种新工具。