Herraiz Aitor, Morales M Puerto, Martínez-Parra Lydia, Arias-Ramos Nuria, López-Larrubia Pilar, Gutiérrez Lucía, Mejías Jesús, Díaz-Ufano Carlos, Ruiz-Cabello Jesús, Herranz Fernando
Grupo de Nanomedicina e Imagen Molecular, Instituto de Química Médica (IQM/CSIC) Juan de la Cierva 3 28006 Madrid Spain
Departamento de Nanociencia y Nanotecnología, Instituto de Ciencia de Materiales de Madrid, CSIC Sor Juana Inés de la Cruz 3. Cantoblanco 28049 Madrid Spain.
Chem Sci. 2024 May 8;15(22):8578-8590. doi: 10.1039/d4sc01069h. eCollection 2024 Jun 5.
The quest for nanomaterial-based imaging probes that can provide positive contrast in MRI is fueled by the necessity of developing novel diagnostic applications with potential for clinical translation that current gold standard probes cannot provide. Although interest in nanomaterials for positive contrast has increased in recent years, their study is less developed than that of traditional negative contrast probes in MRI. In our search for new magnetic materials with enhanced features as positive contrast probes for MRI, we decided to explore the chemical space to comprehensively analyze the effects of different metals on the performance of iron oxide nanomaterials already able to provide positive contrast in MRI. To this end, we synthesized 30 different iron oxide-based nanomaterials. Thorough characterization was performed, including multivariate analysis, to study the effect of different variables on their relaxometric properties. Based on these results, we identified the best combination of metals for imaging and tested them in different experiments. First, we tested its performance on magnetic resonance angiography using a concentration ten times lower than that clinically approved for Gd. Finally, we studied the capability of these nanomaterials to cross the affected blood-brain barrier in a glioblastoma model. The results showed that the selected nanomaterials provided excellent positive contrast at large magnetic field and were able to accumulate at the tumor site, highlighting the affected tissue.
开发具有临床转化潜力的新型诊断应用的必要性推动了对能够在磁共振成像(MRI)中提供阳性对比的基于纳米材料的成像探针的探索,而目前的金标准探针无法提供此类应用。尽管近年来对用于阳性对比的纳米材料的兴趣有所增加,但与MRI中的传统阴性对比探针相比,它们的研究仍不够成熟。在寻找具有增强特性的新型磁性材料作为MRI阳性对比探针的过程中,我们决定探索化学空间,以全面分析不同金属对已能够在MRI中提供阳性对比的氧化铁纳米材料性能的影响。为此,我们合成了30种不同的基于氧化铁的纳米材料。进行了全面表征,包括多变量分析,以研究不同变量对其弛豫性能的影响。基于这些结果,我们确定了用于成像的最佳金属组合,并在不同实验中对其进行了测试。首先,我们使用比临床批准用于钆的浓度低十倍的浓度测试了其在磁共振血管造影上的性能。最后,我们研究了这些纳米材料在胶质母细胞瘤模型中穿过受影响的血脑屏障的能力。结果表明,所选的纳米材料在大磁场下提供了出色的阳性对比,并且能够在肿瘤部位积聚,突出显示受影响的组织。