Muñiz Cano Beatriz, Gudín Adrián, Sánchez-Barriga Jaime, Clark Oliver, Anadón Alberto, Díez Jose Manuel, Olleros-Rodríguez Pablo, Ajejas Fernando, Arnay Iciar, Jugovac Matteo, Rault Julien, Le Fèvre Patrick, Bertran François, Mazhjoo Donya, Bihlmayer Gustav, Rader Oliver, Blügel Stefan, Miranda Rodolfo, Camarero Julio, Valbuena Miguel Angel, Perna Paolo
IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049 Madrid, Spain.
Departamento de Física de la Materia Condensada, Instituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain.
ACS Nano. 2024 Jun 18;18(24):15716-15728. doi: 10.1021/acsnano.4c02154. Epub 2024 Jun 7.
Epitaxial graphene/ferromagnetic metal (Gr/FM) heterostructures deposited onto heavy metals have been proposed for the realization of spintronic devices because of their perpendicular magnetic anisotropy and sizable Dzyaloshinskii-Moriya interaction (DMI), allowing for both enhanced thermal stability and stabilization of chiral spin textures. However, establishing routes toward this goal requires the fundamental understanding of the microscopic origin of their unusual properties. Here, we elucidate the nature of the induced spin-orbit coupling (SOC) at Gr/Co interfaces on Ir. Through spin- and angle-resolved photoemission spectroscopy along with density functional theory, we show that the interaction of the heavy metals with the Gr layer via hybridization with the FM is the source of strong SOC in the Gr layer. Furthermore, our studies on ultrathin Co films underneath Gr reveal an energy splitting of ∼100 meV for in-plane and negligible for out-of-plane spin polarized Gr π-bands, consistent with a Rashba-SOC at the Gr/Co interface, which is either the fingerprint or the origin of the DMI. This mechanism vanishes at large Co thicknesses, where neither in-plane nor out-of-plane spin-orbit splitting is observed, indicating that Gr π-states are electronically decoupled from the heavy metal. The present findings are important for future applications of Gr-based heterostructures in spintronic devices.
由于其垂直磁各向异性和可观的Dzyaloshinskii-Moriya相互作用(DMI),已有人提出将沉积在重金属上的外延石墨烯/铁磁金属(Gr/FM)异质结构用于实现自旋电子器件,这既能增强热稳定性,又能稳定手性自旋纹理。然而,要实现这一目标,需要从微观层面深入理解其异常特性的起源。在此,我们阐明了Ir上Gr/Co界面处诱导自旋轨道耦合(SOC)的本质。通过自旋和角分辨光电子能谱以及密度泛函理论,我们表明重金属与Gr层通过与FM的杂化相互作用是Gr层中强SOC的来源。此外,我们对Gr下方超薄Co膜的研究表明,面内自旋极化的Gr π带存在约100 meV的能量分裂,而面外自旋极化的Gr π带能量分裂可忽略不计,这与Gr/Co界面处的Rashba-SOC一致,它要么是DMI的特征,要么是DMI的起源。当Co厚度较大时,这种机制消失,此时面内和面外自旋轨道分裂均未观察到,这表明Gr π态在电子层面上与重金属解耦。本研究结果对基于Gr的异质结构在自旋电子器件中的未来应用具有重要意义。