Suppr超能文献

为制备具有耐高温性能的可拉伸陶瓷膜而设计的TiO/SiO螺旋卷曲双面纤维。

TiO/SiO spiral crimped Janus fibers engineered for stretchable ceramic membranes with high-temperature resistance.

作者信息

Jiao Wenling, Cheng Wei, Fei Yifan, Zhang Xiaohua, Liu Yitao, Ding Bin

机构信息

Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.

出版信息

Nanoscale. 2024 Jun 27;16(25):12248-12257. doi: 10.1039/d4nr01069h.

Abstract

The tensile brittleness of ceramic nanofibrous materials makes them unable to withstand the relatively large fracture strain, greatly limiting their applications in extreme environments such as high or ultra-low temperatures. Herein, highly stretchable and elastic ceramic nanofibrous membranes composed of titanium dioxide/silicon dioxide (TiO/SiO) bicomponent spiral crimped Janus fibers were designed and synthesized conjugate electrospinning combined with calcination treatment. Owing to the opposite charges attached, the two fibers assembled side by side to form a Janus structure. Interestingly, radial shrinkage differences existed on the two sides of the TiO/SiO composite nanofibers, constructing a helical crimp structure along the fiber axis. The special configuration effectively improves the stretchability of TiO/SiO ceramic nanofibrous membranes, with up to 70.59% elongation at break, excellent resilience at 20% tensile strain and plastic deformation of only 3.48% after 100 cycles. Additionally, the relatively fluffy ceramic membranes constructed from spiral crimped Janus fibers delivered a lower thermal conductivity of 0.0317 W m K, attributed to the increased internal still air content. This work not only reveals the attractive tensile mechanism of ceramic membranes arising from the highly curly nanofibers, but also proposes an effective strategy to make the ceramic materials withstand the complex dynamic strain in extreme temperature environments (from -196 °C to 1300 °C).

摘要

陶瓷纳米纤维材料的拉伸脆性使其无法承受相对较大的断裂应变,这极大地限制了它们在高温或超低温等极端环境中的应用。在此,通过共轭静电纺丝结合煅烧处理,设计并合成了由二氧化钛/二氧化硅(TiO₂/SiO₂)双组分螺旋卷曲的双面纤维组成的高拉伸性和弹性的陶瓷纳米纤维膜。由于带有相反电荷,两种纤维并排组装形成双面结构。有趣的是,TiO₂/SiO₂复合纳米纤维两侧存在径向收缩差异,沿纤维轴构建了螺旋卷曲结构。这种特殊结构有效地提高了TiO₂/SiO₂陶瓷纳米纤维膜的拉伸性,断裂伸长率高达70.59%,在20%拉伸应变下具有出色的回弹性,100次循环后塑性变形仅为3.48%。此外,由螺旋卷曲的双面纤维构建的相对蓬松的陶瓷膜具有较低的热导率,为0.0317W/(m·K),这归因于内部静止空气含量的增加。这项工作不仅揭示了由高度卷曲的纳米纤维引起的陶瓷膜吸引人的拉伸机制,还提出了一种有效的策略,使陶瓷材料能够承受极端温度环境(从-196℃到1300℃)下的复杂动态应变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验