Xu Zhen, Liu Yiming, Xin Qi, Dai Jin, Yu Jianyong, Cheng Longdi, Liu Yi-Tao, Ding Bin
State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Innovation Center for Textile Science and Tehnology, Donghua University, Shanghai, 201620, China.
Adv Mater. 2024 Aug;36(32):e2401299. doi: 10.1002/adma.202401299. Epub 2024 Jun 10.
Thermal insulation under extreme conditions requires the materials to be capable of withstanding complex thermo-mechanical stress, significant gradient temperature transition, and high-frequency thermal shock. The excellent structural and functional properties of ceramic aerogels make them attractive for thermal insulation. However, in extremely high-temperature environments (above 1500 °C), they typically exhibit limited insulation capacity and thermo-mechanical stability, which may lead to catastrophic accidents, and this problem is never effectively addressed. Here, a novel ceramic meta-aerogel constructed from a crosslinked nanofiber network using a reaction electrospinning strategy, which ensures excellent thermo-mechanical stability and superinsulation under extreme conditions, is designed. The ceramic meta-aerogel has an ultralow thermal conductivity of 0.027 W m k, and the cold surface temperature is only 303 °C in a 1700 °C high-temperature environment. After undergoing a significant gradient temperature transition from liquid nitrogen to 1700 °C flame burning, the ceramic meta-aerogel can still withstand thousands of shears, flexures, compressions, and other complex forms of mechanical action without structural collapse. This work provides a new insight for developing ceramic aerogels that can be used for a long period in extremely high-temperature environments.
极端条件下的隔热需要材料能够承受复杂的热机械应力、显著的梯度温度变化和高频热冲击。陶瓷气凝胶优异的结构和功能特性使其成为隔热的理想材料。然而,在极高温度环境(高于1500℃)下,它们通常表现出有限的隔热能力和热机械稳定性,这可能导致灾难性事故,而这个问题从未得到有效解决。在此,设计了一种新型陶瓷超气凝胶,它由使用反应静电纺丝策略构建的交联纳米纤维网络制成,确保了在极端条件下具有优异的热机械稳定性和超级隔热性能。该陶瓷超气凝胶具有0.027W/(m·K)的超低热导率,在1700℃的高温环境中,冷表面温度仅为303℃。在经历从液氮到1700℃火焰燃烧的显著梯度温度变化后,该陶瓷超气凝胶仍能承受数千次剪切、弯曲、压缩和其他复杂形式的机械作用而不发生结构坍塌。这项工作为开发可在极高温度环境中长期使用的陶瓷气凝胶提供了新的见解。