Departament de Ciències Mèdiques Bàsiques, Institut de Recerca Biomèdica de Lleida, Universitat de Lleida, Lleida, 25198, Spain.
Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria.
Cell Mol Life Sci. 2024 Jun 7;81(1):251. doi: 10.1007/s00018-024-05275-3.
The Smc5/6 complex is a highly conserved molecular machine involved in the maintenance of genome integrity. While its functions largely depend on restraining the fork remodeling activity of Mph1 in yeast, the presence of an analogous Smc5/6-FANCM regulation in humans remains unknown. We generated human cell lines harboring mutations in the NSE1 subunit of the Smc5/6 complex. Point mutations or truncations in the RING domain of NSE1 result in drastically reduced Smc5/6 protein levels, with differential contribution of the two zinc-coordinating centers in the RING. In addition, nse1-RING mutant cells display cell growth defects, reduced replication fork rates, and increased genomic instability. Notably, our findings uncover a synthetic sick interaction between Smc5/6 and FANCM and show that Smc5/6 controls fork progression and chromosome disjunction in a FANCM-independent manner. Overall, our study demonstrates that the NSE1 RING domain plays vital roles in Smc5/6 complex stability and fork progression through pathways that are not evolutionary conserved.
Smc5/6 复合物是一种高度保守的分子机器,参与维持基因组完整性。虽然其功能主要依赖于抑制酵母中 Mph1 的叉形重塑活性,但在人类中是否存在类似的 Smc5/6-FANCM 调节尚不清楚。我们生成了携带 Smc5/6 复合物 NSE1 亚基突变的人类细胞系。NSE1 的 RING 结构域中的点突变或截断导致 Smc5/6 蛋白水平显著降低,两个锌配位中心在 RING 中具有不同的贡献。此外,nse1-RING 突变细胞表现出细胞生长缺陷、复制叉速率降低和基因组不稳定性增加。值得注意的是,我们的发现揭示了 Smc5/6 和 FANCM 之间的合成病相互作用,并表明 Smc5/6 以不依赖于 FANCM 的方式控制叉形前进和染色体分离。总体而言,我们的研究表明,NSE1 RING 结构域通过非进化保守的途径在 Smc5/6 复合物稳定性和叉形前进中发挥重要作用。