School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
Biotechnol Lett. 2024 Oct;46(5):781-789. doi: 10.1007/s10529-024-03501-3. Epub 2024 Jun 7.
Sucrose isomerase (SIase) catalyzes the hydrolysis and isomerization of sucrose to form isomaltulose, a valuable functional sugar widely used in the food industry. However, the lack of safe and efficient heterologous expression systems hinders SIase production and application. In this study, we achieved antibiotic-free SIase expression in Bacillus subtilis through genome integration. Using CRISPR/Cas9 system, SIase expression cassettes were integrated into various genomic loci, including amyE and ctc, both individually and in combination, resulting in single-copy and muti-copy integration strains. Engineered strains with a maltose-inducible promoter effectively expressed and secreted SIase. Notably, multi-copy strain exhibited enhanced SIase production, achieving 4.4 U/mL extracellular activity in shake flask cultivations. Furthermore, crude enzyme solution from engineered strain transformed high concentrations sucrose into high yields of isomaltulose, reaching a maximum yield of 94.6%. These findings demonstrate antibiotic-free SIase production in B. subtilis via genome integration, laying the foundation for its industrial production and application.
蔗糖异构酶(SIase)催化蔗糖的水解和异构化,形成异麦芽酮糖,这是一种在食品工业中广泛应用的有价值的功能性糖。然而,缺乏安全高效的异源表达系统限制了 SIase 的生产和应用。在本研究中,我们通过基因组整合实现了枯草芽孢杆菌中无抗生素的 SIase 表达。利用 CRISPR/Cas9 系统,将 SIase 表达盒分别整合到 amyE 和 ctc 等不同的基因组位置,或同时整合到这两个位置,形成单拷贝和多拷贝整合菌株。带有麦芽糖诱导启动子的工程菌株有效地表达和分泌了 SIase。值得注意的是,多拷贝菌株表现出增强的 SIase 生产能力,在摇瓶培养中达到了 4.4 U/mL 的细胞外活性。此外,来自工程菌株的粗酶溶液可将高浓度的蔗糖转化为高产量的异麦芽酮糖,最高产率达到 94.6%。这些发现表明,通过基因组整合可以在枯草芽孢杆菌中实现无抗生素的 SIase 生产,为其工业生产和应用奠定了基础。