Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
Instituto de Ingeniería Biológica y Médica, Facultades de Ingeniería, Medicina y Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile.
Free Radic Biol Med. 2024 Sep;222:505-518. doi: 10.1016/j.freeradbiomed.2024.05.050. Epub 2024 Jun 5.
The oxidative phase of the pentose phosphate pathway (PPP) involving the enzymes glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconolactonase (6PGL), and 6-phosphogluconate dehydrogenase (6PGDH), is critical to NADPH generation within cells, with these enzymes catalyzing the conversion of glucose-6-phosphate (G6P) into ribulose-5-phosphate (Ribu5-P). We have previously studied peroxyl radical (ROO) mediated oxidative inactivation of E. coli G6PDH, 6PGL, and 6PGDH. However, these data were obtained from experiments where each enzyme was independently exposed to ROO, a condition not reflecting biological reality. In this work we investigated how NADPH production is modulated when these enzymes are jointly exposed to ROO. Enzyme mixtures (1:1:1 ratio) were exposed to ROO produced from thermolysis of 100 mM 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). NADPH was quantified at 340 nm, and protein oxidation analyzed by liquid chromatography with mass spectrometric detection (LC-MS). The data obtained were rationalized using a mathematical model. The mixture of non-oxidized enzymes, G6P and NADP generated ∼175 μM NADPH. Computational simulations showed a constant decrease of G6P associated with NADPH formation, consistent with experimental data. When the enzyme mixture was exposed to AAPH (3 h, 37 °C), lower levels of NADPH were detected (∼100 μM) which also fitted with computational simulations. LC-MS analyses indicated modifications at Tyr, Trp, and Met residues but at lower concentrations than detected for the isolated enzymes. Quantification of NADPH generation showed that the pathway activity was not altered during the initial stages of the oxidations, consistent with a buffering role of G6PDH towards inactivation of the oxidative phase of the pathway.
戊糖磷酸途径(PPP)的氧化阶段涉及葡萄糖-6-磷酸脱氢酶(G6PDH)、6-磷酸葡萄糖酸内酯酶(6PGL)和 6-磷酸葡萄糖酸脱氢酶(6PGDH)等酶,对于细胞内 NADPH 的生成至关重要,这些酶催化葡萄糖-6-磷酸(G6P)转化为核酮糖-5-磷酸(Ribu5-P)。我们之前研究了过氧自由基(ROO)介导的大肠杆菌 G6PDH、6PGL 和 6PGDH 的氧化失活。然而,这些数据是从每个酶分别暴露于 ROO 的实验中获得的,这种情况并不反映生物现实。在这项工作中,我们研究了当这些酶共同暴露于 ROO 时,NADPH 的产生是如何被调节的。酶混合物(1:1:1 比例)暴露于由 100 mM 2,2'-偶氮双(2-甲基丙脒)二盐酸盐(AAPH)热解产生的 ROO。在 340nm 处定量 NADPH,并通过带有质谱检测的液相色谱法(LC-MS)分析蛋白质氧化。使用数学模型对获得的数据进行了合理化。未氧化酶、G6P 和 NADP 的混合物产生约 175μM 的 NADPH。计算模拟表明,与 NADPH 形成相关的 G6P 不断减少,与实验数据一致。当酶混合物暴露于 AAPH(3 小时,37°C)时,检测到 NADPH 的水平较低(约 100μM),这也与计算模拟一致。LC-MS 分析表明 Tyr、Trp 和 Met 残基发生了修饰,但浓度低于单独检测到的酶的修饰浓度。NADPH 生成的定量表明,在氧化的初始阶段,途径活性没有改变,这与 G6PDH 对途径氧化阶段失活的缓冲作用一致。