Suppr超能文献

常规使用手术智能进行自动化评估显示,微创妇科手术中医生有大量时间不在患者身体内。

Routine Automated Assessment Using Surgical Intelligence Reveals Substantial Time Spent Outside the Patient's Body in Minimally Invasive Gynecological Surgeries.

机构信息

Department of Gynecology (Levin, Cohen, and Michaan), Lis Maternity Hospital, Tel Aviv Sourasky Medical Center Associated with Tel Aviv University, Tel Aviv, Israel.

Theator Inc. (Bar, Asselmann, and Wolf), Palo Alto, California.

出版信息

J Minim Invasive Gynecol. 2024 Oct;31(10):843-846. doi: 10.1016/j.jmig.2024.05.028. Epub 2024 Jun 6.

Abstract

OBJECTIVE

To demonstrate the use of surgical intelligence to routinely and automatically assess the proportion of time spent outside of the patient's body (out-of-body-OOB) in laparoscopic gynecological procedures, as a potential basis for clinical and efficiency-related insights.

DESIGN

A retrospective analysis of videos of laparoscopic gynecological procedures.

SETTING

Two operating rooms at the Gynecology Department of a tertiary medical center.

PARTICIPANTS

All patients who underwent laparoscopic gynecological procedures between January 1, 2021 and December 31, 2022 in those two rooms.

INTERVENTIONS

A surgical intelligence platform installed in the two rooms routinely captured and analyzed surgical video, using AI to identify and document procedure duration and the amount and percentage of time that the laparoscope was withdrawn from the patient's body per procedure.

RESULTS

A total of 634 surgical videos were included in the final dataset. The cumulative time for all procedures was 639 hours, of which 48 hours (7.5%) were OOB segments. Average OOB percentage was 8.7% (SD = 8.7%) for all the procedures and differed significantly between procedure types (p < .001), with unilateral and bilateral salpingo-oophorectomies showing the highest percentages at 15.6% (SD = 13.3%) and 13.3% (SD = 11.3%), respectively. Hysterectomy and myomectomy, which do not require the endoscope to be removed for specimen extraction, showed a lower percentage (mean = 4.2%, SD = 5.2%) than the other procedures (mean = 11.1%, SD = 9.3%; p < .001). Percentages were lower when the operating team included a senior surgeon (mean = 8.4%, standard deviation = 9.2%) than when it did not (mean = 10.1%, standard deviation = 6.9%; p < .001).

CONCLUSION

Surgical intelligence revealed a substantial percentage of OOB segments in laparoscopic gynecological procedures, alongside associations with surgeon seniority and procedure type. Further research is needed to evaluate how laparoscope removal affects postoperative outcomes and operational efficiency in surgery.

摘要

目的

展示如何利用手术智能技术,常规且自动评估腹腔镜妇科手术中器械离开患者身体的时间比例(离体时间,out-of-body-OOB),为临床和效率相关的见解提供潜在依据。

设计

对腹腔镜妇科手术视频进行回顾性分析。

地点

三级医疗中心妇科的两个手术室。

参与者

这两个房间内 2021 年 1 月 1 日至 2022 年 12 月 31 日期间接受腹腔镜妇科手术的所有患者。

干预措施

两个房间内安装了一个手术智能平台,常规采集和分析手术视频,使用人工智能识别和记录手术时长以及每例手术中腹腔镜从患者体内取出的时间和比例。

结果

最终数据集包含 634 个手术视频。所有手术的总时间为 639 小时,其中 48 小时(7.5%)为离体时间。所有手术的平均离体时间百分比为 8.7%(标准差=8.7%),不同手术类型之间差异显著(p<.001),单侧和双侧输卵管卵巢切除术的离体时间百分比最高,分别为 15.6%(标准差=13.3%)和 13.3%(标准差=11.3%)。不需要将内镜取出以取出标本的子宫切除术和子宫肌瘤切除术显示的离体时间百分比较低(平均值=4.2%,标准差=5.2%),低于其他手术(平均值=11.1%,标准差=9.3%;p<.001)。当手术团队中包含资深外科医生时,离体时间百分比较低(平均值=8.4%,标准差=9.2%),不包含时则较高(平均值=10.1%,标准差=6.9%;p<.001)。

结论

手术智能技术揭示了腹腔镜妇科手术中存在大量离体时间,且与外科医生的资历和手术类型有关。需要进一步研究评估腹腔镜取出对术后结果和手术操作效率的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验