Suppr超能文献

将外科智能引入妇科:自动识别子宫切除术的关键步骤。

Introducing surgical intelligence in gynecology: Automated identification of key steps in hysterectomy.

机构信息

Department of Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.

Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Int J Gynaecol Obstet. 2024 Sep;166(3):1273-1278. doi: 10.1002/ijgo.15490. Epub 2024 Mar 28.

Abstract

OBJECTIVE

The analysis of surgical videos using artificial intelligence holds great promise for the future of surgery by facilitating the development of surgical best practices, identifying key pitfalls, enhancing situational awareness, and disseminating that information via real-time, intraoperative decision-making. The objective of the present study was to examine the feasibility and accuracy of a novel computer vision algorithm for hysterectomy surgical step identification.

METHODS

This was a retrospective study conducted on surgical videos of laparoscopic hysterectomies performed in 277 patients in five medical centers. We used a surgical intelligence platform (Theator Inc.) that employs advanced computer vision and AI technology to automatically capture video data during surgery, deidentify, and upload procedures to a secure cloud infrastructure. Videos were manually annotated with sequential steps of surgery by a team of annotation specialists. Subsequently, a computer vision system was trained to perform automated step detection in hysterectomy. Analyzing automated video annotations in comparison to manual human annotations was used to determine accuracy.

RESULTS

The mean duration of the videos was 103 ± 43 min. Accuracy between AI-based predictions and manual human annotations was 93.1% on average. Accuracy was highest for the dissection and mobilization step (96.9%) and lowest for the adhesiolysis step (70.3%).

CONCLUSION

The results of the present study demonstrate that a novel AI-based model achieves high accuracy for automated steps identification in hysterectomy. This lays the foundations for the next phase of AI, focused on real-time clinical decision support and prediction of outcome measures, to optimize surgeon workflow and elevate patient care.

摘要

目的

人工智能分析手术视频有望成为未来手术的发展方向,通过促进最佳手术实践的发展、识别关键陷阱、增强情境意识,并通过实时术中决策来传播这些信息。本研究的目的是检验一种用于识别子宫切除术手术步骤的新型计算机视觉算法的可行性和准确性。

方法

这是一项回顾性研究,共纳入了来自五个医疗中心的 277 名患者的腹腔镜子宫切除术手术视频。我们使用了一种手术智能平台(Theator Inc.),该平台采用先进的计算机视觉和人工智能技术,在手术过程中自动捕获视频数据,进行去标识化,并将手术程序上传到安全的云基础设施。视频由一组标注专家手动标注手术的连续步骤。随后,训练一个计算机视觉系统来自动检测子宫切除术的步骤。通过比较自动视频标注和手动人工标注来分析准确性。

结果

视频的平均时长为 103±43 分钟。基于人工智能的预测与手动人工标注之间的平均准确率为 93.1%。在解剖和移动步骤中的准确率最高(96.9%),在粘连松解步骤中的准确率最低(70.3%)。

结论

本研究的结果表明,一种新型基于人工智能的模型在子宫切除术的自动步骤识别中具有很高的准确性。这为下一阶段的人工智能奠定了基础,重点是实时临床决策支持和预测结果衡量指标,以优化外科医生的工作流程并提升患者护理水平。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验