Suppr超能文献

治疗前计算机放射组学、深度放射组学和转录组学的整合可改善软组织肉瘤患者的预后。

Integration of pre-treatment computational radiomics, deep radiomics, and transcriptomics enhances soft-tissue sarcoma patient prognosis.

作者信息

Crombé Amandine, Lucchesi Carlo, Bertolo Frédéric, Kind Michèle, Spalato-Ceruso Mariella, Toulmonde Maud, Chaire Vanessa, Michot Audrey, Coindre Jean-Michel, Perret Raul, Le Loarer François, Bourdon Aurélien, Italiano Antoine

机构信息

Department of Oncologic Imaging, Bergonié Institute, F-33076, Bordeaux, France.

Department of Radiology, Pellegrin University Hospital, F-33076, Bordeaux, France.

出版信息

NPJ Precis Oncol. 2024 Jun 7;8(1):129. doi: 10.1038/s41698-024-00616-8.

Abstract

Our objective was to capture subgroups of soft-tissue sarcoma (STS) using handcraft and deep radiomics approaches to understand their relationship with histopathology, gene-expression profiles, and metastatic relapse-free survival (MFS). We included all consecutive adults with newly diagnosed locally advanced STS (N = 225, 120 men, median age: 62 years) managed at our sarcoma reference center between 2008 and 2020, with contrast-enhanced baseline MRI. After MRI postprocessing, segmentation, and reproducibility assessment, 175 handcrafted radiomics features (h-RFs) were calculated. Convolutional autoencoder neural network (CAE) and half-supervised CAE (HSCAE) were trained in repeated cross-validation on representative contrast-enhanced slices to extract 1024 deep radiomics features (d-RFs). Gene-expression levels were calculated following RNA sequencing (RNAseq) of 110 untreated samples from the same cohort. Unsupervised classifications based on h-RFs, CAE, HSCAE, and RNAseq were built. The h-RFs, CAE, and HSCAE grouping were not associated with the transcriptomics groups but with prognostic radiological features known to correlate with lower survivals and higher grade and SARCULATOR groups (a validated prognostic clinical-histological nomogram). HSCAE and h-RF groups were also associated with MFS in multivariable Cox regressions. Combining HSCAE and transcriptomics groups significantly improved the prognostic performances compared to each group alone, according to the concordance index. The combined radiomic-transcriptomic group with worse MFS was characterized by the up-regulation of 707 genes and 292 genesets related to inflammation, hypoxia, apoptosis, and cell differentiation. Overall, subgroups of STS identified on pre-treatment MRI using handcrafted and deep radiomics were associated with meaningful clinical, histological, and radiological characteristics, and could strengthen the prognostic value of transcriptomics signatures.

摘要

我们的目标是使用手工制作和深度放射组学方法来识别软组织肉瘤(STS)的亚组,以了解它们与组织病理学、基因表达谱以及无转移复发生存期(MFS)之间的关系。我们纳入了2008年至2020年间在我们的肉瘤参考中心接受治疗的所有连续的新诊断为局部晚期STS的成年人(N = 225,男性120例,中位年龄:62岁),均有增强基线MRI。在进行MRI后处理、分割和可重复性评估后,计算了175个手工制作的放射组学特征(h-RFs)。卷积自动编码器神经网络(CAE)和半监督CAE(HSCAE)在代表性增强切片上进行重复交叉验证训练,以提取1024个深度放射组学特征(d-RFs)。对同一队列中110个未治疗样本进行RNA测序(RNAseq)后计算基因表达水平。基于h-RFs、CAE、HSCAE和RNAseq构建了无监督分类。h-RFs、CAE和HSCAE分组与转录组学组无关,但与已知与较低生存率、较高分级相关的预后放射学特征以及SARCULATOR组(一种经过验证的预后临床组织学列线图)相关。在多变量Cox回归中,HSCAE和h-RF组也与MFS相关。根据一致性指数,与单独的每组相比,将HSCAE和转录组学组相结合显著提高了预后性能。MFS较差的联合放射组学 - 转录组学组的特征是707个基因和292个与炎症、缺氧、凋亡和细胞分化相关的基因集上调。总体而言,使用手工制作和深度放射组学在治疗前MRI上识别出的STS亚组与有意义的临床、组织学和放射学特征相关,并且可以增强转录组学特征的预后价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0d2/11161510/04c688319070/41698_2024_616_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验