Suppr超能文献

一种评估单阶段隆乳上提术后并发症风险因素的机器学习方法的实施

Implementation of a Machine Learning Approach Evaluating Risk Factors for Complications after Single-Stage Augmentation Mastopexy.

作者信息

Huyghebaert Tom Alexander, Wallner Christoph, Montemurro Paolo

机构信息

Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789, Bochum, Germany.

Akademikliniken, Storängsvägen 10, 11541, Stockholm, Sweden.

出版信息

Aesthetic Plast Surg. 2024 Dec;48(23):5049-5059. doi: 10.1007/s00266-024-04142-7. Epub 2024 Jun 7.

Abstract

BACKGROUND

Single-stage mastopexy augmentation is a much-debated intervention due to its complexity and the associated relatively high complication rates. This study aimed to reevaluate the risk factors for these complications using a novel approach based on artificial intelligence and to demonstrate its possible limitations.

PATIENTS AND METHODS

Complete datasets of patients who underwent single-staged augmentation mastopexy during 2014-2023 at one institution by a single surgeon were collected retrospectively. These were subsequently processed and analyzed by CART, RF and XGBoost algorithms.

RESULTS

A total of 342 patients were included in the study, of which 43 (12.57%) reported surgery-associated complications, whereby capsular contracture (n = 19) was the most common. BMI represented the most important variable for the development of complications (FIS = 0.44 in CART). 2.9% of the patients expressed the desire for implant change in the course, with absence of any complications. A statistically significant correlation between smoking and the desire for implant change (p < 0.001) was revealed.

CONCLUSION

The importance of implementing artificial intelligence into clinical research could be underpinned by this study, as risk variables can be reclassified based on factors previously considered less or even irrelevant. Thereby we encountered limitations using ML approaches. Further studies will be needed to investigate the association between smoking, BMI and the current implant size with the desire for implant change without any complications. Moreover, we could show that the procedure can be performed safely without high risk of developing major complications.

LEVEL OF EVIDENCE IV

This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

摘要

背景

由于其复杂性和相对较高的并发症发生率,单阶段乳房上提隆乳术是一种备受争议的干预措施。本研究旨在采用基于人工智能的新方法重新评估这些并发症的风险因素,并展示其可能存在的局限性。

患者与方法

回顾性收集了2014年至2023年期间在一家机构由一名外科医生进行单阶段隆乳上提术的患者的完整数据集。随后,这些数据由CART、RF和XGBoost算法进行处理和分析。

结果

本研究共纳入342例患者,其中43例(12.57%)报告了与手术相关的并发症,其中包膜挛缩(n = 19)最为常见。BMI是并发症发生的最重要变量(CART中FIS = 0.44)。2.9%的患者在病程中表示希望更换植入物,且未出现任何并发症。研究发现吸烟与更换植入物的意愿之间存在统计学显著相关性(p < 0.001)。

结论

本研究可以支持将人工智能应用于临床研究的重要性,因为风险变量可以根据先前认为不太重要甚至无关的因素进行重新分类。因此,我们在使用机器学习方法时遇到了局限性。需要进一步研究来调查吸烟、BMI和当前植入物大小与无并发症更换植入物意愿之间的关联。此外,我们可以证明该手术可以安全进行,不会有发生重大并发症的高风险。

证据级别IV:本杂志要求作者为每篇文章指定证据级别。有关这些循证医学评级的完整描述,请参阅目录或在线作者指南www.springer.com/00266。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验