文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 F-FDG PET/CT 影像组学预测乳腺癌腋窝淋巴结转移负荷

Prediction of the axillary lymph-node metastatic burden of breast cancer by F-FDG PET/CT-based radiomics.

机构信息

PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an Shaanxi, Shaanxi, 710061, China.

出版信息

BMC Cancer. 2024 Jun 7;24(1):704. doi: 10.1186/s12885-024-12476-3.


DOI:10.1186/s12885-024-12476-3
PMID:38849770
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11161959/
Abstract

BACKGROUND: The axillary lymph-node metastatic burden is closely associated with treatment decisions and prognosis in breast cancer patients. This study aimed to explore the value of F-fluorodeoxyglucose (F-FDG) positron emission tomography (PET)/computed tomography (CT)-based radiomics in combination with ultrasound and clinical pathological features for predicting axillary lymph-node metastatic burden in breast cancer. METHODS: A retrospective analysis was conducted and involved 124 patients with pathologically confirmed early-stage breast cancer who had undergone F-FDG PET/CT examination. The ultrasound, PET/CT, and clinical pathological features of all patients were analysed, and radiomic features from PET images were extracted to establish a multi-parameter predictive model. RESULTS: The ultrasound lymph-node positivity rate and PET lymph-node positivity rate in the high nodal burden group were significantly higher than those in the low nodal burden group (χ = 19.867, p < 0.001; χ = 33.025, p < 0.001). There was a statistically significant difference in the PET-based radiomics score (RS) for predicting axillary lymph-node burden between the high and low lymph-node burden groups. (-1.04 ± 0.41 vs. -1.47 ± 0.41, t = -4.775, p < 0.001). The ultrasound lymph-node positivity (US_LNM) (odds ratio [OR] = 3.264, 95% confidence interval [CI] = 1.022-10.423), PET lymph-node positivity (PET_LNM) (OR = 14.242, 95% CI = 2.960-68.524), and RS (OR = 5.244, 95% CI = 3.16-20.896) are all independent factors associated with high lymph-node burden (p < 0.05). The area under the curve (AUC) of the multi-parameter (MultiP) model was 0.895, which was superior to those of US_LNM, PET_LNM, and RS models (AUC = 0.703, 0.814, 0.773, respectively), with statistically significant differences (Z = 2.888, 3.208, 3.804, respectively; p = 0.004, 0.002, < 0.001, respectively). Decision curve analysis indicated that the MultiP model provided a higher net benefit for all patients. CONCLUSION: A MultiP model based on PET-based radiomics was able to effectively predict axillary lymph-node metastatic burden in breast cancer. TRIAL REGISTRATION: This study was registered with ClinicalTrials.gov (registration number: NCT05826197) on May 7, 2023.

摘要

背景:腋窝淋巴结转移负荷与乳腺癌患者的治疗决策和预后密切相关。本研究旨在探讨 F-氟脱氧葡萄糖(F-FDG)正电子发射断层扫描(PET)/计算机断层扫描(CT)-基于放射组学结合超声和临床病理特征预测乳腺癌腋窝淋巴结转移负荷的价值。

方法:回顾性分析了 124 例经病理证实的早期乳腺癌患者,这些患者均接受了 F-FDG PET/CT 检查。分析了所有患者的超声、PET/CT 和临床病理特征,并提取了 PET 图像的放射组学特征,以建立多参数预测模型。

结果:高淋巴结负荷组的超声淋巴结阳性率和 PET 淋巴结阳性率明显高于低淋巴结负荷组(χ=19.867,p<0.001;χ=33.025,p<0.001)。高和低淋巴结负荷组之间基于 PET 的放射组学评分(RS)预测腋窝淋巴结负担有统计学显著差异。(-1.04±0.41 与-1.47±0.41,t=-4.775,p<0.001)。超声淋巴结阳性(US_LNM)(比值比[OR]=3.264,95%置信区间[CI]=1.022-10.423)、PET 淋巴结阳性(PET_LNM)(OR=14.242,95%CI=2.960-68.524)和 RS(OR=5.244,95%CI=3.16-20.896)均为与高淋巴结负荷相关的独立因素(p<0.05)。多参数(MultiP)模型的曲线下面积(AUC)为 0.895,优于 US_LNM、PET_LNM 和 RS 模型(AUC=0.703、0.814、0.773,分别),差异有统计学意义(Z=2.888、3.208、3.804,分别;p=0.004、0.002、<0.001,分别)。决策曲线分析表明,MultiP 模型为所有患者提供了更高的净收益。

结论:基于 PET 放射组学的 MultiP 模型能够有效预测乳腺癌腋窝淋巴结转移负荷。

试验注册:本研究于 2023 年 5 月 7 日在 ClinicalTrials.gov 注册(注册号:NCT05826197)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/40f492fe8dbe/12885_2024_12476_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/bb602639c45d/12885_2024_12476_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/c01d399dbd2b/12885_2024_12476_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/710b95cfce4f/12885_2024_12476_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/8ebc44e43ab7/12885_2024_12476_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/fe048c121384/12885_2024_12476_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/6747d0171427/12885_2024_12476_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/d3a28fc37d62/12885_2024_12476_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/a2401daea291/12885_2024_12476_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/8e2802fe0286/12885_2024_12476_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/40f492fe8dbe/12885_2024_12476_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/bb602639c45d/12885_2024_12476_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/c01d399dbd2b/12885_2024_12476_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/710b95cfce4f/12885_2024_12476_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/8ebc44e43ab7/12885_2024_12476_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/fe048c121384/12885_2024_12476_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/6747d0171427/12885_2024_12476_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/d3a28fc37d62/12885_2024_12476_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/a2401daea291/12885_2024_12476_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/8e2802fe0286/12885_2024_12476_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/272f/11161959/40f492fe8dbe/12885_2024_12476_Fig10_HTML.jpg

相似文献

[1]
Prediction of the axillary lymph-node metastatic burden of breast cancer by F-FDG PET/CT-based radiomics.

BMC Cancer. 2024-6-7

[2]
Construction of a comprehensive predictive model for axillary lymph node metastasis in breast cancer: a retrospective study.

BMC Cancer. 2023-10-24

[3]
Factors affecting the accuracy of F-FDG PET/CT in evaluating axillary metastases in invasive breast cancer.

Niger J Clin Pract. 2019-1

[4]
FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study.

Eur Radiol. 2022-9

[5]
The role of ultrasonography and FDG-PET in axillary lymph node staging of breast cancer.

Acta Radiol. 2010-10

[6]
Preoperative prediction of lymph node metastasis in colorectal cancer using F-FDG PET/CT peritumoral radiomics analysis.

Med Phys. 2024-8

[7]
PET/CT in breast cancer staging is useful for evaluation of axillary lymph node and distant metastases.

Surg Oncol. 2021-9

[8]
Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.

J Ultrasound Med. 2024-9

[9]
Discordant results in F-FDG PET/CT and ultrasound-based assessment for axillary lymph node metastasis detection: A large retrospective analysis in 560 patients with breast cancer.

Cancer Treat Res Commun. 2021

[10]
Comparison of the diagnostic value of FDG-PET/CT and axillary ultrasound for the detection of lymph node metastases in breast cancer patients.

Acta Radiol. 2012-12-1

引用本文的文献

[1]
Prediction of axillary nodal burden using preoperative magnetic resonance imaging scoring in patients with clinically node-negative breast cancer: a retrospective cohort study.

Gland Surg. 2024-12-31

[2]
Predictive and Prognostic Values of Glycoprotein 96, Androgen Receptors, and Extranodal Extension in Sentinel Lymph Node-Positive Breast Cancer: An Immunohistochemical Retrospective Study.

J Clin Med. 2024-12-16

本文引用的文献

[1]
Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis.

BMC Pulm Med. 2024-5-18

[2]
Clinical and economic outcomes of adding [18F]FES PET/CT in estrogen receptor status identification in metastatic and recurrent breast cancer in the US.

PLoS One. 2024

[3]
Applications of FAPI PET/CT in the diagnosis and treatment of breast and the most common gynecologic malignancies: a literature review.

Front Oncol. 2024-3-5

[4]
Dynamic whole-body [F]FES PET/CT increases lesion visibility in patients with metastatic breast cancer.

EJNMMI Res. 2024-3-4

[5]
Evaluation of blood supply and metabolism in tumor, axillary lymph node and normal breast tissue with F-18 FDG PET/CT in breast cancer: comparison with pathological prognostic factors.

BMC Womens Health. 2024-1-16

[6]
A multivariable model of ultrasound and clinicopathological features for predicting axillary nodal burden of breast cancer: potential to prevent unnecessary axillary lymph node dissection.

BMC Cancer. 2023-12-21

[7]
Construction of a comprehensive predictive model for axillary lymph node metastasis in breast cancer: a retrospective study.

BMC Cancer. 2023-10-24

[8]
Prediction of Axillary Lymph Node Metastasis in Early-stage Triple-Negative Breast Cancer Using Multiparametric and Radiomic Features of Breast MRI.

Acad Radiol. 2023-9

[9]
NCCN Guidelines® Insights: Breast Cancer, Version 4.2023.

J Natl Compr Canc Netw. 2023-6

[10]
Cancer statistics, 2023.

CA Cancer J Clin. 2023-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索