文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

COVID-19 疫苗接种后反应性腋窝淋巴结病与转移性乳腺癌腋窝淋巴结病的 FDG PET/CT 影像组学鉴别:一项初步研究。

FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study.

机构信息

Department of Diagnostic Imaging, Chaim Sheba Medical Center, 2 Sheba Road, 5266202, Ramat Gan, Israel.

Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

出版信息

Eur Radiol. 2022 Sep;32(9):5921-5929. doi: 10.1007/s00330-022-08725-3. Epub 2022 Apr 6.


DOI:10.1007/s00330-022-08725-3
PMID:35385985
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8985565/
Abstract

OBJECTIVES: To evaluate if radiomics with machine learning can differentiate between F-18-fluorodeoxyglucose (FDG)-avid breast cancer metastatic lymphadenopathy and FDG-avid COVID-19 mRNA vaccine-related axillary lymphadenopathy. MATERIALS AND METHODS: We retrospectively analyzed FDG-positive, pathology-proven, metastatic axillary lymph nodes in 53 breast cancer patients who had PET/CT for follow-up or staging, and FDG-positive axillary lymph nodes in 46 patients who were vaccinated with the COVID-19 mRNA vaccine. Radiomics features (110 features classified into 7 groups) were extracted from all segmented lymph nodes. Analysis was performed on PET, CT, and combined PET/CT inputs. Lymph nodes were randomly assigned to a training (n = 132) and validation cohort (n = 33) by 5-fold cross-validation. K-nearest neighbors (KNN) and random forest (RF) machine learning models were used. Performance was evaluated using an area under the receiver-operator characteristic curve (AUC-ROC) score. RESULTS: Axillary lymph nodes from breast cancer patients (n = 85) and COVID-19-vaccinated individuals (n = 80) were analyzed. Analysis of first-order features showed statistically significant differences (p < 0.05) in all combined PET/CT features, most PET features, and half of the CT features. The KNN model showed the best performance score for combined PET/CT and PET input with 0.98 (± 0.03) and 0.88 (± 0.07) validation AUC, and 96% (± 4%) and 85% (± 9%) validation accuracy, respectively. The RF model showed the best result for CT input with 0.96 (± 0.04) validation AUC and 90% (± 6%) validation accuracy. CONCLUSION: Radiomics features can differentiate between FDG-avid breast cancer metastatic and FDG-avid COVID-19 vaccine-related axillary lymphadenopathy. Such a model may have a role in differentiating benign nodes from malignant ones. KEY POINTS: • Patients who were vaccinated with the COVID-19 mRNA vaccine have shown FDG-avid reactive axillary lymph nodes in PET-CT scans. • We evaluated if radiomics and machine learning can distinguish between FDG-avid metastatic axillary lymphadenopathy in breast cancer patients and FDG-avid reactive axillary lymph nodes. • Combined PET and CT radiomics data showed good test AUC (0.98) for distinguishing between metastatic axillary lymphadenopathy and post-COVID-19 vaccine-associated axillary lymphadenopathy. Therefore, the use of radiomics may have a role in differentiating between benign from malignant FDG-avid nodes.

摘要

目的:评估放射组学与机器学习是否可区分 F-18-氟脱氧葡萄糖(FDG)阳性乳腺癌转移性淋巴结和 FDG 阳性 COVID-19 mRNA 疫苗相关腋窝淋巴结。

材料与方法:我们回顾性分析了 53 例经 PET/CT 随访或分期检查证实的 FDG 阳性、经病理证实的转移性腋窝淋巴结的患者和 46 例接种 COVID-19 mRNA 疫苗后 FDG 阳性腋窝淋巴结的患者。从所有分割的淋巴结中提取放射组学特征(分为 7 组的 110 个特征)。对 PET、CT 和联合 PET/CT 输入进行分析。通过 5 折交叉验证,将淋巴结随机分配到训练集(n=132)和验证集(n=33)。使用 K-最近邻(KNN)和随机森林(RF)机器学习模型进行分析。使用受试者工作特征曲线(AUC-ROC)下面积评估性能。

结果:分析了来自乳腺癌患者(n=85)和接种 COVID-19 疫苗患者(n=80)的腋窝淋巴结。对一阶特征的分析表明,所有联合 PET/CT 特征、大多数 PET 特征和一半 CT 特征均存在统计学显著差异(p<0.05)。KNN 模型在联合 PET/CT 和 PET 输入方面表现出最佳性能评分,验证 AUC 分别为 0.98(±0.03)和 0.88(±0.07),验证准确率分别为 96%(±4%)和 85%(±9%)。RF 模型在 CT 输入方面表现出最佳结果,验证 AUC 为 0.96(±0.04),验证准确率为 90%(±6%)。

结论:放射组学特征可区分 FDG 阳性乳腺癌转移性和 FDG 阳性 COVID-19 疫苗相关腋窝淋巴结。该模型可能在区分良性淋巴结和恶性淋巴结方面具有一定作用。

重点:

  1. 接种 COVID-19 mRNA 疫苗的患者在 PET-CT 扫描中显示 FDG 阳性反应性腋窝淋巴结。
  2. 我们评估了放射组学和机器学习是否可区分乳腺癌患者的 FDG 阳性转移性腋窝淋巴结和 COVID-19 疫苗相关的 FDG 阳性反应性腋窝淋巴结。
  3. 转移性腋窝淋巴结和 COVID-19 疫苗接种后相关腋窝淋巴结的联合 PET 和 CT 放射组学数据在区分方面具有良好的测试 AUC(0.98)。因此,放射组学的应用可能在区分 FDG 阳性良性和恶性淋巴结方面具有一定作用。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/858e5935cf49/330_2022_8725_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/0469bb584fe4/330_2022_8725_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/ab6c94ac0b9e/330_2022_8725_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/1532cab56322/330_2022_8725_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/cd2e4a8c26c2/330_2022_8725_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/816635dbdfea/330_2022_8725_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/858e5935cf49/330_2022_8725_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/0469bb584fe4/330_2022_8725_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/ab6c94ac0b9e/330_2022_8725_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/1532cab56322/330_2022_8725_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/cd2e4a8c26c2/330_2022_8725_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/816635dbdfea/330_2022_8725_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe81/8985565/858e5935cf49/330_2022_8725_Fig6_HTML.jpg

相似文献

[1]
FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study.

Eur Radiol. 2022-9

[2]
[F]FDG uptake of axillary lymph nodes after COVID-19 vaccination in oncological PET/CT: frequency, intensity, and potential clinical impact.

Eur Radiol. 2022-1

[3]
Axillary lymph node characteristics in breast cancer patients versus post-COVID-19 vaccination: Overview of current evidence per imaging modality.

Eur J Radiol. 2022-7

[4]
Morphological and Metabolic Criteria of COVID-19 Vaccine Associated Axillary Nodes on 18-Fluorodeouxyglucose PET/CT Imaging in Breast Cancer Patients.

Asian Pac J Cancer Prev. 2023-12-1

[5]
Prediction of the axillary lymph-node metastatic burden of breast cancer by F-FDG PET/CT-based radiomics.

BMC Cancer. 2024-6-7

[6]
Frequency and Characteristics of Nodal and Deltoid FDG and C-Choline Uptake on PET Performed After COVID-19 Vaccination.

AJR Am J Roentgenol. 2021-11

[7]
PET/CT in breast cancer staging is useful for evaluation of axillary lymph node and distant metastases.

Surg Oncol. 2021-9

[8]
Challenging Axillary Lymph Nodes on PET/CT in Cancer Patients throughout COVID-19 Vaccination Era.

Curr Pharm Des. 2024

[9]
An [F]FDG PET/3D-ultrashort echo time MRI-based radiomics model established by machine learning facilitates preoperative assessment of lymph node status in non-small cell lung cancer.

Eur Radiol. 2024-1

[10]
The Challenge of Staging Breast Cancer With PET/CT in the Era of COVID Vaccination.

Clin Nucl Med. 2021-12-1

引用本文的文献

[1]
F-FDG PET/CT radiomic analysis and artificial intelligence to predict pathological complete response after neoadjuvant chemotherapy in breast cancer patients.

Radiol Med. 2025-4

[2]
Distinguishing Axillary Lymphadenopathy after COVID-19 Vaccination from Malignant Lymphadenopathy.

J Clin Med. 2024-6-9

[3]
Examination of iatrogenic FDG accumulation after COVID-19 vaccination.

Ann Nucl Med. 2024-6

[4]
Radiomics nomogram for predicting axillary lymph node metastasis-a potential method to address the limitation of axilla coverage in cone-beam breast CT: a bi-center retrospective study.

Radiol Med. 2023-12

[5]
Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study.

Eur Radiol. 2024-4

[6]
Reproducibility of radiomics quality score: an intra- and inter-rater reliability study.

Eur Radiol. 2024-4

[7]
Clinical application of F-fluorodeoxyglucose positron emission tomography/computed tomography radiomics-based machine learning analyses in the field of oncology.

Jpn J Radiol. 2024-1

[8]
[F]FES PET Resolves the Diagnostic Dilemma of COVID-19-Vaccine-Associated Hypermetabolic Lymphadenopathy in ER-Positive Breast Cancer.

Diagnostics (Basel). 2023-5-25

[9]
PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review.

Int J Mol Sci. 2022-11-2

[10]
Frontiers and hotspots of F-FDG PET/CT radiomics: A bibliometric analysis of the published literature.

Front Oncol. 2022-9-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索