文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从原发性肺腺癌提取的放射组学特征预测胸内淋巴结转移的价值:系统评价和荟萃分析。

Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis.

机构信息

Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), 54 Youdian Road, Hangzhou, China.

The First School of Clinical Medicine of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China.

出版信息

BMC Pulm Med. 2024 May 18;24(1):246. doi: 10.1186/s12890-024-03020-x.


DOI:10.1186/s12890-024-03020-x
PMID:38762472
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11102161/
Abstract

BACKGROUND: The application of radiomics in thoracic lymph node metastasis (LNM) of lung adenocarcinoma is increasing, but diagnostic performance of radiomics from primary tumor to predict LNM has not been systematically reviewed. Therefore, this study sought to provide a general overview regarding the methodological quality and diagnostic performance of using radiomic approaches to predict the likelihood of LNM in lung adenocarcinoma. METHODS: Studies were gathered from literature databases such as PubMed, Embase, the Web of Science Core Collection, and the Cochrane library. The Radiomic Quality Score (RQS) and the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) were both used to assess the quality of each study. The pooled sensitivity, specificity, and area under the curve (AUC) of the best radiomics models in the training and validation cohorts were calculated. Subgroup and meta-regression analyses were also conducted. RESULTS: Seventeen studies with 159 to 1202 patients each were enrolled between the years of 2018 to 2022, of which ten studies had sufficient data for the quantitative evaluation. The percentage of RQS was between 11.1% and 44.4% and most of the studies were considered to have a low risk of bias and few applicability concerns in QUADAS-2. Pyradiomics and logistic regression analysis were the most commonly used software and methods for radiomics feature extraction and selection, respectively. In addition, the best prediction models in seventeen studies were mainly based on radiomics features combined with non-radiomics features (semantic features and/or clinical features). The pooled sensitivity, specificity, and AUC of the training cohorts were 0.84 (95% confidence interval (CI) [0.73-0.91]), 0.88 (95% CI [0.81-0.93]), and 0.93(95% CI [0.90-0.95]), respectively. For the validation cohorts, the pooled sensitivity, specificity, and AUC were 0.89 (95% CI [0.82-0.94]), 0.86 (95% CI [0.74-0.93]) and 0.94 (95% CI [0.91-0.96]), respectively. CONCLUSIONS: Radiomic features based on the primary tumor have the potential to predict preoperative LNM of lung adenocarcinoma. However, radiomics workflow needs to be standardized to better promote the applicability of radiomics. TRIAL REGISTRATION: CRD42022375712.

摘要

背景:放射组学在肺腺癌胸内淋巴结转移(LNM)中的应用越来越多,但从原发肿瘤预测 LNM 的放射组学诊断性能尚未得到系统评价。因此,本研究旨在提供一个关于使用放射组学方法预测肺腺癌 LNM 可能性的方法学质量和诊断性能的综合概述。

方法:从文献数据库(如 PubMed、Embase、Web of Science 核心合集和 Cochrane 图书馆)中收集研究。使用放射组学质量评分(RQS)和诊断准确性研究的质量评估-2(QUADAS-2)来评估每个研究的质量。计算训练和验证队列中最佳放射组学模型的合并敏感性、特异性和曲线下面积(AUC)。还进行了亚组和 meta 回归分析。

结果:纳入了 2018 年至 2022 年间的 17 项研究,每项研究的患者数为 159 至 1202 例,其中 10 项研究具有定量评估的足够数据。RQS 的百分比在 11.1%至 44.4%之间,大多数研究在 QUADAS-2 中被认为具有低偏倚风险和较少的适用性问题。Pyradiomics 和逻辑回归分析分别是最常用的放射组学特征提取和选择软件和方法。此外,17 项研究中的最佳预测模型主要基于放射组学特征与非放射组学特征(语义特征和/或临床特征)的组合。训练队列的合并敏感性、特异性和 AUC 分别为 0.84(95%置信区间[0.73-0.91])、0.88(95%置信区间[0.81-0.93])和 0.93(95%置信区间[0.90-0.95])。对于验证队列,合并敏感性、特异性和 AUC 分别为 0.89(95%置信区间[0.82-0.94])、0.86(95%置信区间[0.74-0.93])和 0.94(95%置信区间[0.91-0.96])。

结论:基于原发肿瘤的放射组学特征有可能预测肺腺癌术前 LNM。然而,放射组学工作流程需要标准化,以更好地促进放射组学的适用性。

试验注册:CRD42022375712。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/568f212c1eea/12890_2024_3020_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/98b7a7e5844b/12890_2024_3020_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/d871a25adc79/12890_2024_3020_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/765cf7c055fb/12890_2024_3020_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/26bc9a20f7cc/12890_2024_3020_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/a6b031348066/12890_2024_3020_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/568f212c1eea/12890_2024_3020_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/98b7a7e5844b/12890_2024_3020_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/d871a25adc79/12890_2024_3020_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/765cf7c055fb/12890_2024_3020_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/26bc9a20f7cc/12890_2024_3020_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/a6b031348066/12890_2024_3020_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bb1/11102161/568f212c1eea/12890_2024_3020_Fig6_HTML.jpg

相似文献

[1]
Predictive value of radiomic features extracted from primary lung adenocarcinoma in forecasting thoracic lymph node metastasis: a systematic review and meta-analysis.

BMC Pulm Med. 2024-5-18

[2]
Value of Presurgical F-FDG PET/CT Radiomics for Predicting Mediastinal Lymph Node Metastasis in Patients with Lung Adenocarcinoma.

Cancer Biother Radiopharm. 2024-10

[3]
Radiomics and deep learning models for CT pre-operative lymph node staging in pancreatic ductal adenocarcinoma: A systematic review and meta-analysis.

Eur J Radiol. 2024-7

[4]
A deep learning-based radiomics model for predicting lymph node status from lung adenocarcinoma.

BMC Med Imaging. 2024-5-24

[5]
MRI-Based Radiomics Methods for Predicting Ki-67 Expression in Breast Cancer: A Systematic Review and Meta-analysis.

Acad Radiol. 2024-3

[6]
A meta-analysis of MRI-based radiomic features for predicting lymph node metastasis in patients with cervical cancer.

Eur J Radiol. 2022-6

[7]
Radiomics diagnostic performance in predicting lymph node metastasis of papillary thyroid carcinoma: A systematic review and meta-analysis.

Eur J Radiol. 2023-11

[8]
Ultrasound-based radiomics machine learning models for diagnosing cervical lymph node metastasis in patients with non-small cell lung cancer: a multicentre study.

BMC Cancer. 2024-4-27

[9]
Integrative nomogram of intratumoral, peritumoral, and lymph node radiomic features for prediction of lymph node metastasis in cT1N0M0 lung adenocarcinomas.

Sci Rep. 2021-5-24

[10]
Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?

Eur Radiol. 2019-3-18

引用本文的文献

[1]
Habitat-based radiomics from contrast-enhanced CT and clinical data to predict lymph node metastasis in clinical N0 peripheral lung adenocarcinoma ≤ 3 cm.

Sci Rep. 2025-5-16

[2]
Data Science Opportunities To Improve Radiotherapy Planning and Clinical Decision Making.

Semin Radiat Oncol. 2024-10

[3]
Prediction of the axillary lymph-node metastatic burden of breast cancer by F-FDG PET/CT-based radiomics.

BMC Cancer. 2024-6-7

本文引用的文献

[1]
Radiomics nomogram integrating intratumoural and peritumoural features to predict lymph node metastasis and prognosis in clinical stage IA non-small cell lung cancer: a two-centre study.

Clin Radiol. 2023-5

[2]
Incidence and Risk Factors for Infectious Complications of EBUS-TBNA: Prospective Multicenter Study.

Arch Bronconeumol. 2023-2

[3]
Criteria for the translation of radiomics into clinically useful tests.

Nat Rev Clin Oncol. 2023-2

[4]
Value of Presurgical F-FDG PET/CT Radiomics for Predicting Mediastinal Lymph Node Metastasis in Patients with Lung Adenocarcinoma.

Cancer Biother Radiopharm. 2024-10

[5]
Development and validation of a deep learning signature for predicting lymph node metastasis in lung adenocarcinoma: comparison with radiomics signature and clinical-semantic model.

Eur Radiol. 2023-3

[6]
Identification of pulmonary adenocarcinoma and benign lesions in isolated solid lung nodules based on a nomogram of intranodal and perinodal CT radiomic features.

Front Oncol. 2022-9-6

[7]
Perinodular Parenchymal Features Improve Indeterminate Lung Nodule Classification.

Acad Radiol. 2023-6

[8]
Development of a PET/CT molecular radiomics-clinical model to predict thoracic lymph node metastasis of invasive lung adenocarcinoma ≤ 3 cm in diameter.

EJNMMI Res. 2022-4-21

[9]
Integrative Predictive Models of Computed Tomography Texture Parameters and Hematological Parameters for Lymph Node Metastasis in Lung Adenocarcinomas.

J Comput Assist Tomogr.

[10]
A Novel Benchmarking Approach to Assess the Agreement among Radiomic Tools.

Radiology. 2022-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索