Suppr超能文献

不同管电压图像全自动分类模型对骨密度筛查的影响:一项自身对照研究。

Effect of fully automatic classification model from different tube voltage images on bone density screening: A self-controlled study.

机构信息

Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China.

CT Research, GE Healthcare, Dalian, China.

出版信息

Eur J Radiol. 2024 Aug;177:111521. doi: 10.1016/j.ejrad.2024.111521. Epub 2024 May 21.

Abstract

PURPOSE

To develop two bone status prediction models combining deep learning and radiomics based on standard-dose chest computed tomography (SDCT) and low-dose chest computed tomography (LDCT), and to evaluate the effect of tube voltage on reproducibility of radiomics features and predictive efficacy of these models.

METHODS

A total of 1508 patients were enrolled in this retrospective study. LDCT was conducted using 80 kVp, tube current ranging from 100 to 475 mA. On the other hand, SDCT was performed using 120 kVp, tube current ranging from 100 to 520 mA. We developed an automatic thoracic vertebral cancellous bone (TVCB) segmentation model. Subsequently, 1184 features were extracted and two classifiers were developed based on LDCT and SDCT images. Based on the diagnostic results of quantitative computed tomography examination, the first-level classifier was initially developed to distinguish normal or abnormal BMD (including osteoporosis and osteopenia), while the second-level classifier was employed to identify osteoporosis or osteopenia. The Dice coefficient was used to evaluate the performance of the automated segmentation model. The Concordance Correlation Coefficients (CCC) of radiomics features were calculated between LDCT and SDCT, and the performance of these models was evaluated.

RESULTS

Our automated segmentation model achieved a Dice coefficient of 0.98 ± 0.01 and 0.97 ± 0.02 in LDCT and SDCT, respectively. Alterations in tube voltage decreased the reproducibility of the extracted radiomic features, with 85.05 % of the radiomic features exhibiting low reproducibility (CCC < 0.75). The area under the curve (AUC) using LDCT-based and SDCT-based models was 0.97 ± 0.01 and 0.94 ± 0.02, respectively. Nonetheless, cross-validation with independent test sets of different tube voltage scans suggests that variations in tube voltage can impair the diagnostic efficacy of the model. Consequently, radiomics models are not universally applicable to images of varying tube voltages. In clinical settings, ensuring consistency between the tube voltage of the image used for model development and that of the acquired patient image is critical.

CONCLUSIONS

Automatic bone status prediction models, utilizing either LDCT or SDCT images, enable accurate assessment of bone status. Tube voltage impacts reproducibility of features and predictive efficacy of models. It is necessary to account for tube voltage variation during the image acquisition.

摘要

目的

基于标准剂量胸部 CT(SDCT)和低剂量胸部 CT(LDCT),开发两种结合深度学习和放射组学的骨状态预测模型,并评估管电压对放射组学特征重复性和这些模型预测效能的影响。

方法

本回顾性研究共纳入 1508 例患者。LDCT 采用 80 kVp、管电流 100-475 mA;SDCT 采用 120 kVp、管电流 100-520 mA。我们开发了一种自动胸椎松质骨(TVCB)分割模型。随后,提取了 1184 个特征,并基于 LDCT 和 SDCT 图像开发了两个分类器。基于定量 CT 检查的诊断结果,首先开发了一级分类器来区分正常或异常 BMD(包括骨质疏松症和低骨量),然后使用二级分类器来识别骨质疏松症或低骨量。使用 Dice 系数评估自动分割模型的性能。计算了 LDCT 和 SDCT 之间放射组学特征的一致性相关系数(CCC),并评估了这些模型的性能。

结果

我们的自动分割模型在 LDCT 和 SDCT 中的 Dice 系数分别为 0.98±0.01 和 0.97±0.02。管电压的变化降低了提取的放射组学特征的可重复性,85.05%的放射组学特征可重复性较低(CCC<0.75)。基于 LDCT 和 SDCT 的模型的曲线下面积(AUC)分别为 0.97±0.01 和 0.94±0.02。然而,使用不同管电压扫描的独立测试集进行的交叉验证表明,管电压的变化会影响模型的诊断效能。因此,放射组学模型不适用于不同管电压的图像。在临床环境中,确保模型开发和获取的患者图像的管电压之间的一致性至关重要。

结论

基于 LDCT 或 SDCT 图像的自动骨状态预测模型能够准确评估骨状态。管电压会影响特征的可重复性和模型的预测效能。在图像采集过程中需要考虑管电压的变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验