Suppr超能文献

基于胸部低剂量 CT 的骨质疏松症自动分割与放射组学纹理分析

Automatic segmentation and radiomic texture analysis for osteoporosis screening using chest low-dose computed tomography.

机构信息

Translational Imaging Research Center, Taipei Medical University Hospital, Taipei, Taiwan.

Department of Medical Imaging, Taipei Medical University Hospital, Taipei, Taiwan.

出版信息

Eur Radiol. 2023 Jul;33(7):5097-5106. doi: 10.1007/s00330-023-09421-6. Epub 2023 Jan 31.

Abstract

OBJECTIVE

This study developed a diagnostic tool combining machine learning (ML) segmentation and radiomic texture analysis (RTA) for bone density screening using chest low-dose computed tomography (LDCT).

METHODS

A total of 197 patients who underwent LDCT followed by dual-energy X-ray absorptiometry were analyzed. First, an autosegmentation model was trained using LDCT to delineate the thoracic vertebral body (VB). Second, a two-level classifier was developed using radiomic features extracted from VBs for the hierarchical pairwise classification of each patient's bone status. All the patients were initially classified as either normal or abnormal, and all patients with abnormal bone density were then subdivided into an osteopenia group and an osteoporosis group. The performance of the classifier was evaluated through fivefold cross-validation.

RESULTS

The model for automated VB segmentation achieved a Sorenson-Dice coefficient of 0.87 ± 0.01. Furthermore, the area under the receiver operating characteristic curve scores for the two-level classifier were 0.96 ± 0.01 for detecting abnormal bone density (accuracy = 0.91 ± 0.02; sensitivity = 0.93 ± 0.03; specificity = 0.89 ± 0.03) and 0.98 ± 0.01 for distinguishing osteoporosis (accuracy = 0.94 ± 0.02; sensitivity = 0.95 ± 0.03; specificity = 0.93 ± 0.03). The testing prediction accuracy levels for the first- and second-level classifiers were 0.92 ± 0.04 and 0.94 ± 0.05, respectively. The overall testing prediction accuracy of our method was 0.90 ± 0.05.

CONCLUSION

The combination of ML segmentation and RTA for automated bone density prediction based on LDCT scans is a feasible approach that could be valuable for osteoporosis screening during lung cancer screening.

KEY POINTS

• This study developed an automatic diagnostic tool combining machine learning-based segmentation and radiomic texture analysis for bone density screening using chest low-dose computed tomography. • The developed method enables opportunistic screening without quantitative computed tomography or a dedicated phantom. • The developed method could be integrated into the current clinical workflow and used as an adjunct for opportunistic screening or for patients who are ineligible for screening with dual-energy X-ray absorptiometry.

摘要

目的

本研究开发了一种结合机器学习(ML)分割和放射组学纹理分析(RTA)的诊断工具,用于使用胸部低剂量计算机断层扫描(LDCT)进行骨密度筛查。

方法

共分析了 197 名接受 LDCT 后行双能 X 线吸收法检查的患者。首先,使用 LDCT 训练自动分割模型以描绘胸椎(VB)。其次,使用从 VB 中提取的放射组学特征开发了一个两级分类器,用于对每个患者的骨状况进行分层两两分类。所有患者最初均分为正常或异常,所有骨密度异常的患者随后再细分为骨质疏松症组和骨质疏松症组。通过五重交叉验证评估分类器的性能。

结果

自动 VB 分割模型的 Sorenson-Dice 系数为 0.87±0.01。此外,两级分类器的受试者工作特征曲线下面积得分分别为 0.96±0.01,用于检测异常骨密度(准确率=0.91±0.02;灵敏度=0.93±0.03;特异性=0.89±0.03)和 0.98±0.01,用于区分骨质疏松症(准确率=0.94±0.02;灵敏度=0.95±0.03;特异性=0.93±0.03)。一级和二级分类器的测试预测准确率分别为 0.92±0.04 和 0.94±0.05。我们方法的整体测试预测准确率为 0.90±0.05。

结论

基于 LDCT 扫描的 ML 分割和 RTA 相结合的自动骨密度预测是一种可行的方法,可用于肺癌筛查期间的骨质疏松症筛查。

关键点

• 本研究开发了一种自动诊断工具,将基于机器学习的分割和放射组学纹理分析相结合,用于使用胸部低剂量计算机断层扫描进行骨密度筛查。• 所开发的方法无需定量计算机断层扫描或专用体模即可实现机会性筛查。• 该方法可以整合到当前的临床工作流程中,并用作机会性筛查的辅助手段,或用于不适合双能 X 线吸收法筛查的患者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验