Suppr超能文献

使用 CT 放射组学预测肺癌侵袭性的组织病理学特征:系统评价。

Predicting histopathological features of aggressiveness in lung cancer using CT radiomics: a systematic review.

机构信息

University College London, Department of Respiratory Medicine, UK.

University College London, Department of Radiology, UK.

出版信息

Clin Radiol. 2024 Sep;79(9):681-689. doi: 10.1016/j.crad.2024.04.022. Epub 2024 May 17.

Abstract

PURPOSE

To examine the accuracy of CT radiomics to predict histopathological features of aggressiveness in lung cancer using a systematic review of test accuracy studies.

METHODS

Data sources searched included Medline, Embase, Web of Science, and Cochrane Library from up to 3 November 2023. Included studies reported test accuracy of CT radiomics models to detect the presence of: spread through air spaces (STAS), predominant adenocarcinoma pattern, adenocarcinoma grade, lymphovascular invasion (LVI), tumour infiltrating lymphocytes (TIL) and tumour necrosis, in patients with lung cancer. The primary outcome was test accuracy. Two reviewers independently assessed articles for inclusion and assessed methodological quality using the QUality Assessment of Diagnostic Accuracy Studies-2 tool. A single reviewer extracted data, which was checked by a second reviewer. Narrative data synthesis was performed.

RESULTS

Eleven studies were included in the final analysis. 10/11 studies were in East Asian populations. 4/11 studies investigated STAS, 6/11 investigated adenocarcinoma invasiveness or growth pattern, and 1/11 investigated LVI. No studies investigating TIL or tumour necrosis met inclusion criteria. Studies were of generally mixed to poor methodological quality. Reported accuracies for radiomic models ranged from 0.67 to 0.94.

CONCLUSION

Due to the high risk of bias and concerns regarding applicability, the evidence is inconclusive as to whether radiomic features can accurately predict prognostically important histopathological features of cancer aggressiveness. Many studies were excluded due to lack of external validation. Rigorously conducted prospective studies with sufficient external validity will be required for radiomic models to play a role in improving lung cancer outcomes.

摘要

目的

通过系统综述测试准确性研究,检验 CT 放射组学预测肺癌侵袭性组织病理学特征的准确性。

方法

截至 2023 年 11 月 3 日,检索了 Medline、Embase、Web of Science 和 Cochrane Library 等数据资源。纳入的研究报告了 CT 放射组学模型检测肺癌患者存在以下特征的测试准确性:气腔内播散(STAS)、主要腺癌模式、腺癌分级、血管侵犯(LVI)、肿瘤浸润淋巴细胞(TIL)和肿瘤坏死。主要结局是测试准确性。两名审查员独立评估文章的纳入情况,并使用 QUality Assessment of Diagnostic Accuracy Studies-2 工具评估方法学质量。一名审查员提取数据,另一名审查员进行核对。采用叙述性数据综合方法。

结果

最终分析纳入了 11 项研究。11 项研究均来自东亚人群。4 项研究调查了 STAS,6 项研究调查了腺癌侵袭性或生长模式,1 项研究调查了 LVI。没有研究符合纳入标准,以调查 TIL 或肿瘤坏死。研究的方法学质量普遍为混合至较差。放射组学模型的报告准确率为 0.67 至 0.94。

结论

由于存在高偏倚风险和适用性问题,目前尚不能确定放射组学特征是否能准确预测癌症侵袭性的预后重要组织病理学特征。由于缺乏外部验证,许多研究被排除在外。需要进行严格的具有足够外部有效性的前瞻性研究,以便放射组学模型在改善肺癌结局方面发挥作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验