Suppr超能文献

利用计算分区从底部重建可居住带。

Rebuilding the Habitable Zone from the Bottom up with Computational Zones.

机构信息

NASA Ames Research Center, Moffett Field, California, USA.

Cross Labs, Cross Compass Ltd., Kyoto, Japan.

出版信息

Astrobiology. 2024 Jun;24(6):613-627. doi: 10.1089/ast.2023.0035. Epub 2024 Jun 10.

Abstract

Computation, if treated as a set of physical processes that act on information represented by states of matter, encompasses biological systems, digital systems, and other constructs and may be a fundamental measure of living systems. The opportunity for biological computation, represented in the propagation and selection-driven evolution of information-carrying organic molecular structures, has been partially characterized in terms of planetary habitable zones (HZs) based on primary conditions such as temperature and the presence of liquid water. A generalization of this concept to computational zones (CZs) is proposed, with constraints set by three principal characteristics: capacity (including computation rates), energy, and instantiation (or substrate, including spatial extent). CZs naturally combine traditional habitability factors, including those associated with biological function that incorporate the chemical milieu, constraints on nutrients and free energy, as well as element availability. Two example applications are presented by examining the fundamental thermodynamic work efficiency and Landauer limit of photon-driven biological computation on planetary surfaces and of generalized computation in stellar energy capture structures (a.k.a. Dyson structures). It is suggested that CZs that involve nested structures or substellar objects could manifest unique observational signatures as cool far-infrared emitters. While these latter scenarios are entirely hypothetical, they offer a useful, complementary introduction to the potential universality of CZs.

摘要

如果将计算视为一组对物质状态所表示的信息进行操作的物理过程,那么它就包含了生物系统、数字系统和其他构建体,并且可能是生命系统的基本度量。生物计算的机会体现在信息载体有机分子结构的传播和选择驱动的演化中,部分特征已经根据行星可居住带(HZs)的主要条件进行了描述,例如温度和液态水的存在。本文提出了一个计算区(CZs)的概念,该概念受到三个主要特征的限制:容量(包括计算速率)、能量和实例化(或基质,包括空间范围)。CZs 自然地结合了传统的可居住性因素,包括与生物功能相关的因素,这些因素包含了化学环境、对营养物质和自由能的限制,以及元素的可用性。通过检查行星表面上光子驱动的生物计算和广义恒星能量捕获结构(即戴森结构)中的基本热力学工作效率和兰德auer 极限,提出了两个示例应用。有人认为,涉及嵌套结构或亚恒星物体的 CZs 可能表现出独特的观测特征,例如冷的远红外辐射体。虽然这些情况完全是假设的,但它们提供了对 CZs 潜在普遍性的有用的、互补的介绍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验