Space Research Institute, Austrian Academy of Sciences, Graz Austria.
IGAM/Institute of Physics, University of Graz, Graz, Austria.
Astrobiology. 2024 Oct;24(10):e916-e1061. doi: 10.1089/ast.2023.0076.
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N-O-dominated atmospheres with minor amounts of CO can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of and planets that can potentially host N-O-dominated atmospheres with maximum CO mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (, the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
在 Lammer 等人(2024 年)的研究中,我们将类地行星栖息地(EHs)定义为复杂生命宜居带(HZCL)内的岩石系外行星,其上存在类地的 N-O 主导大气,且 CO 含量较低,同时还推导出了一种估算星系中 EHs 最大数量的公式,该公式考虑了 EH 演化所需的现实概率要求。在这项研究中,我们通过仅考虑已经可以科学量化的要求,将该公式应用于银河盘。通过实现恒星形成率、初始质量函数和银河系质量分布的文献模型,我们将盘状恒星的空间分布计算为恒星质量和出生年龄的函数。对于我们公式的恒星部分,我们应用现有的银河宜居带模型,并通过实现最新的恒星演化和高层大气模型,评估 HZCL 内不同 CO 混合比下 N-O 主导大气的热稳定性。对于行星部分,我们包括岩石系外行星的频率、地表水和陆上区域的可用性,以及通过评估其重要性并从文献中找到的最小值到最大值来实施这些标准,来确定大型卫星存在的可能性。我们还讨论了其他尚未科学量化但可能是 EH 演化要求的因素。基于这种方法,我们发现 EHs 相对较少,因为我们获得了合理的最大数量的 和行星,它们分别可以潜在地容纳最大 CO 混合比为 10%和 1%的 N-O 主导大气,这意味着,平均而言,需要 HZCL 内的最少的岩石系外行星才能使 1 个 EH 进化。然而,EHs 的实际数量可能远低于我们的最大范围,因为我们的模型不包括几个具有未知发生率的要求( ,生命的起源,碳硅和氮循环的工作;这也意味着外星智能(ETI)仍然要罕见得多。我们的结果表明,并非每颗恒星都可以容纳 EHs,也并非 HZCL 内的每颗岩石系外行星都可以进化,从而使其能够容纳复杂的动物生命甚至 ETI。哥白尼平庸原则因此不能被用来推断这种生命在星系中会很常见。