Suppr超能文献

基于主成分分析-信息者模型的ROP预测方法

ROP Prediction Method Based on PCA-Informer Modeling.

作者信息

Wang Yefeng, Lou Yishan, Lin Yang, Cai Qiaoling, Zhu Liang

机构信息

School of Petroleum Engineering, Changjiang University, Wuhan 430100, China.

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Wuhan 430100, China.

出版信息

ACS Omega. 2024 May 22;9(22):23822-23831. doi: 10.1021/acsomega.3c10339. eCollection 2024 Jun 4.

Abstract

Increasing the rate of penetration (ROP) is an effective means to improve the drilling efficiency. At present, the efficiency and accuracy of intelligent prediction methods for the rate of penetration still need to be improved. To improve the efficiency and accuracy of rate of penetration prediction, this paper proposes a ROP prediction model based on Informer optimized by principal component analysis (PCA). We take the Taipei Basin block oilfield as an example. First, we use principal component analysis to extract data features, transforming the original data into low-dimensional feature data. Second, we use the PCA-optimized data to build an Informer model for predicting ROP. Finally, combined with actual data and using the recurrent neural network (RNN) and long short-term memory (LSTM) as baselines, we perform algorithm performance comparative analysis using root-mean-square error (RMSE), mean absolute error (MAE), and coefficient of determination ( ). The results show that the average MAE, RMSE, and of the PCA-Informer model are 9.402, 0.172, and 0.858, respectively. Compared with other methods, it has a larger and smaller RMSE and MAPE, indicating that this method significantly outperforms existing methods and provides a new solution to improve the rate of penetration in actual drilling operations.

摘要

提高机械钻速(ROP)是提高钻井效率的有效手段。目前,机械钻速智能预测方法的效率和准确性仍有待提高。为提高机械钻速预测的效率和准确性,本文提出一种基于主成分分析(PCA)优化的Informer的ROP预测模型。我们以台北盆地区块油田为例。首先,我们使用主成分分析提取数据特征,将原始数据转换为低维特征数据。其次,我们使用经PCA优化的数据构建一个用于预测ROP的Informer模型。最后,结合实际数据并以递归神经网络(RNN)和长短期记忆网络(LSTM)作为基线,我们使用均方根误差(RMSE)、平均绝对误差(MAE)和决定系数( )进行算法性能对比分析。结果表明,PCA-Informer模型的平均MAE、RMSE和 分别为9.402、0.172和0.858。与其他方法相比,它具有更大的 以及更小的RMSE和平均绝对百分比误差(MAPE),表明该方法明显优于现有方法,并为提高实际钻井作业中的机械钻速提供了一种新的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d48b/11154915/ae2ca620a15e/ao3c10339_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验