Teoh Jing Ru, Hasikin Khairunnisa, Lai Khin Wee, Wu Xiang, Li Chong
Biomedical Engineering Department, University of Malaya, Wilayah Persekutuan Kuala Lumpur, Malaysia.
Centre of Intelligent Systems for Emerging Technology (CISET), Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia.
PeerJ Comput Sci. 2024 May 29;10:e2082. doi: 10.7717/peerj-cs.2082. eCollection 2024.
Breast cancer remains a pressing global health concern, necessitating accurate diagnostics for effective interventions. Deep learning models (AlexNet, ResNet-50, VGG16, GoogLeNet) show remarkable microcalcification identification (>90%). However, distinct architectures and methodologies pose challenges. We propose an ensemble model, merging unique perspectives, enhancing precision, and understanding critical factors for breast cancer intervention. Evaluation favors GoogleNet and ResNet-50, driving their selection for combined functionalities, ensuring improved precision, and dependability in microcalcification detection in clinical settings.
This study presents a comprehensive mammogram preprocessing framework using an optimized deep learning ensemble approach. The proposed framework begins with artifact removal using Otsu Segmentation and morphological operation. Subsequent steps include image resizing, adaptive median filtering, and deep convolutional neural network (D-CNN) development transfer learning with ResNet-50 model. Hyperparameters are optimized, and ensemble optimization (AlexNet, GoogLeNet, VGG16, ResNet-50) are constructed to identify the localized area of microcalcification. Rigorous evaluation protocol validates the efficacy of individual models, culminating in the ensemble model demonstrating superior predictive accuracy.
Based on our analysis, the proposed ensemble model exhibited exceptional performance in the classification of microcalcifications. This was evidenced by the model's average confidence score, which indicated a high degree of dependability and certainty in differentiating these critical characteristics. The proposed model demonstrated a noteworthy average confidence level of 0.9305 in the classification of microcalcification, outperforming alternative models and providing substantial insights into the dependability of the model. The average confidence of the ensemble model in classifying normal cases was 0.8859, which strengthened the model's consistent and dependable predictions. In addition, the ensemble models attained remarkably high performances in terms of accuracy, precision, recall, F1-score, and area under the curve (AUC).
The proposed model's thorough dataset integration and focus on average confidence ratings within classes improve clinical diagnosis accuracy and effectiveness for breast cancer. This study introduces a novel methodology that takes advantage of an ensemble model and rigorous evaluation standards to substantially improve the accuracy and dependability of breast cancer diagnostics, specifically in the detection of microcalcifications.
乳腺癌仍然是一个紧迫的全球健康问题,需要准确的诊断以进行有效的干预。深度学习模型(AlexNet、ResNet - 50、VGG16、GoogLeNet)在微钙化识别方面表现出色(>90%)。然而,不同的架构和方法带来了挑战。我们提出了一种集成模型,融合独特视角,提高精度,并了解乳腺癌干预的关键因素。评估结果显示GoogleNet和ResNet - 50表现出色,促使它们因具备多种功能而被选用,确保在临床环境中微钙化检测的精度和可靠性得到提高。
本研究提出了一个全面的乳房X光片预处理框架,采用优化的深度学习集成方法。所提出的框架首先使用大津分割法和形态学操作去除伪影。后续步骤包括图像缩放、自适应中值滤波以及使用ResNet - 50模型进行深度卷积神经网络(D - CNN)的开发和迁移学习。对超参数进行优化,并构建集成优化模型(AlexNet、GoogLeNet、VGG16、ResNet - 50)以识别微钙化的局部区域。严格的评估协议验证了各个模型的有效性,最终集成模型展现出卓越的预测准确性。
基于我们的分析,所提出的集成模型在微钙化分类中表现出卓越的性能。模型的平均置信度得分证明了这一点,该得分表明在区分这些关键特征时具有高度的可靠性和确定性。所提出的模型在微钙化分类中表现出值得注意的平均置信水平0.9305,优于其他模型,并为模型的可靠性提供了重要见解。集成模型在正常病例分类中的平均置信度为0.8859,这加强了模型一致且可靠的预测。此外,集成模型在准确性、精度、召回率、F1分数和曲线下面积(AUC)方面都取得了非常高的性能。
所提出模型对数据集的全面整合以及对类内平均置信度评分的关注提高了乳腺癌临床诊断的准确性和有效性。本研究引入了一种新颖的方法,利用集成模型和严格的评估标准,大幅提高了乳腺癌诊断的准确性和可靠性,特别是在微钙化检测方面。