Suppr超能文献

利用迁移学习和预训练深度卷积神经网络模型对磁共振图像中的高级脑肿瘤进行分类

Advanced Brain Tumor Classification in MR Images Using Transfer Learning and Pre-Trained Deep CNN Models.

作者信息

Disci Rukiye, Gurcan Fatih, Soylu Ahmet

机构信息

Department of Management Information Systems, Faculty of Economics and Administrative Sciences, Karadeniz Technical University, 61080 Trabzon, Turkey.

Department of Computer Science, Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, 2815 Gjøvik, Norway.

出版信息

Cancers (Basel). 2025 Jan 2;17(1):121. doi: 10.3390/cancers17010121.

Abstract

BACKGROUND/OBJECTIVES: Brain tumor classification is a crucial task in medical diagnostics, as early and accurate detection can significantly improve patient outcomes. This study investigates the effectiveness of pre-trained deep learning models in classifying brain MRI images into four categories: Glioma, Meningioma, Pituitary, and No Tumor, aiming to enhance the diagnostic process through automation.

METHODS

A publicly available Brain Tumor MRI dataset containing 7023 images was used in this research. The study employs state-of-the-art pre-trained models, including Xception, MobileNetV2, InceptionV3, ResNet50, VGG16, and DenseNet121, which are fine-tuned using transfer learning, in combination with advanced preprocessing and data augmentation techniques. Transfer learning was applied to fine-tune the models and optimize classification accuracy while minimizing computational requirements, ensuring efficiency in real-world applications.

RESULTS

Among the tested models, Xception emerged as the top performer, achieving a weighted accuracy of 98.73% and a weighted F1 score of 95.29%, demonstrating exceptional generalization capabilities. These models proved particularly effective in addressing class imbalances and delivering consistent performance across various evaluation metrics, thus demonstrating their suitability for clinical adoption. However, challenges persist in improving recall for the Glioma and Meningioma categories, and the black-box nature of deep learning models requires further attention to enhance interpretability and trust in medical settings.

CONCLUSIONS

The findings underscore the transformative potential of deep learning in medical imaging, offering a pathway toward more reliable, scalable, and efficient diagnostic tools. Future research will focus on expanding dataset diversity, improving model explainability, and validating model performance in real-world clinical settings to support the widespread adoption of AI-driven systems in healthcare and ensure their integration into clinical workflows.

摘要

背景/目的:脑肿瘤分类是医学诊断中的一项关键任务,因为早期准确检测可显著改善患者预后。本研究调查预训练深度学习模型在将脑磁共振成像(MRI)图像分为四类(胶质瘤、脑膜瘤、垂体瘤和无肿瘤)方面的有效性,旨在通过自动化增强诊断过程。

方法

本研究使用了一个包含7023张图像的公开可用脑肿瘤MRI数据集。该研究采用了包括Xception、MobileNetV2、InceptionV3、ResNet50、VGG16和DenseNet121在内的先进预训练模型,这些模型通过迁移学习进行微调,并结合先进的预处理和数据增强技术。应用迁移学习对模型进行微调并优化分类准确率,同时将计算需求降至最低,确保在实际应用中的效率。

结果

在测试的模型中,Xception表现最佳,加权准确率达到98.73%,加权F1分数达到95.29%,展现出卓越的泛化能力。这些模型在解决类别不平衡问题以及在各种评估指标上提供一致性能方面特别有效,从而证明了它们适用于临床应用。然而,在提高胶质瘤和脑膜瘤类别的召回率方面仍然存在挑战,并且深度学习模型的黑箱性质需要进一步关注,以增强在医疗环境中的可解释性和可信度。

结论

研究结果强调了深度学习在医学成像中的变革潜力,为开发更可靠、可扩展和高效的诊断工具提供了一条途径。未来的研究将集中于扩大数据集的多样性、提高模型的可解释性以及在实际临床环境中验证模型性能,以支持人工智能驱动系统在医疗保健中的广泛应用,并确保它们融入临床工作流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b51/11719945/2cdf7f33c6e2/cancers-17-00121-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验