Suppr超能文献

通过混合深度学习模型推进乳腺超声诊断。

Advancing breast ultrasound diagnostics through hybrid deep learning models.

机构信息

Department of Computer Science and Engineering,MLR Institute of Technology, Dundigal, Hyderabad, Telangana, 500043, India.

Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522302, India; Department of Computer Science and Engineering, Graphic Era Hill University, Dehradun, 248002, India.

出版信息

Comput Biol Med. 2024 Sep;180:108962. doi: 10.1016/j.compbiomed.2024.108962. Epub 2024 Aug 13.

Abstract

Today, doctors rely heavily on medical imaging to identify abnormalities. Proper classification of these abnormalities enables them to take informed actions, leading to early diagnosis and treatment. This paper introduces the "EfficientKNN" model, a novel hybrid deep learning approach that combines the advanced feature extraction capabilities of EfficientNetB3 with the simplicity and effectiveness of the k-Nearest Neighbors (k-NN) algorithm. Initially, EfficientNetB3, pre-trained on ImageNet, is repurposed to serve as a feature extractor. Subsequently, a GlobalAveragePooling2D layer is applied, followed by an optional Principal Component Analysis (PCA) to reduce dimensionality while preserving critical information. PCA is used selectively when deemed necessary. The extracted features are then classified using an optimized k-NN algorithm, fine-tuned through meticulous cross-validation.Our model underwent rigorous training using a curated dataset containing benign, malignant, and normal medical images. Data augmentation techniques, including rotations, shifts, flips, and zooms, were employed to help the model generalize and efficiently handle new, unseen data. To enhance the model's ability to identify the important features necessary for accurate predictions, the dataset was refined using segmentation and overlay techniques. The training utilized an ensemble of optimization algorithms-SGD, Adam, and RMSprop-with hyperparameters set at a learning rate of 0.00045, a batch size of 32, and up to 120 epochs, facilitated by early stopping to prevent overfitting.The results demonstrate that the EfficientKNN model outperforms traditional models such as VGG16, AlexNet, and VGG19 in terms of accuracy, precision, and F1-score. Additionally, the model showed better results compared to EfficientNetB3 alone. Achieving a 100 % accuracy rate on multiple tests, the EfficientKNN model has significant potential for real-world diagnostic applications. This study highlights the model's scalability, efficient use of cloud storage, and real-time prediction capabilities, all while minimizing computational demands.By integrating the strengths of EfficientNetB3's deep learning architecture with the interpretability of k-NN, EfficientKNN presents a significant advancement in medical image classification, promising improved diagnostic accuracy and clinical applicability.

摘要

如今,医生在识别异常方面严重依赖医学成像。对这些异常进行正确分类可以使他们采取明智的行动,从而实现早期诊断和治疗。本文介绍了“EfficientKNN”模型,这是一种新颖的混合深度学习方法,结合了 EfficientNetB3 的高级特征提取能力和 k-最近邻 (k-NN) 算法的简单性和有效性。最初,在 ImageNet 上进行预训练的 EfficientNetB3 被重新用于作为特征提取器。随后,应用 GlobalAveragePooling2D 层,然后选择性地应用主成分分析 (PCA) 以在保留关键信息的同时降低维度。当认为必要时使用 PCA。然后使用优化的 k-NN 算法对提取的特征进行分类,并通过细致的交叉验证进行微调。我们的模型使用包含良性、恶性和正常医学图像的精心制作的数据集进行了严格的训练。使用数据增强技术,包括旋转、移位、翻转和缩放,帮助模型泛化并有效地处理新的、未见过的数据。为了提高模型识别准确预测所需的重要特征的能力,使用分割和叠加技术对数据集进行了细化。该训练使用了 SGD、Adam 和 RMSprop 等多种优化算法的集合,并将超参数设置为学习率为 0.00045、批量大小为 32 和最多 120 个时期,通过提前停止防止过度拟合来实现。结果表明,与传统模型(如 VGG16、AlexNet 和 VGG19)相比,EfficientKNN 模型在准确性、精度和 F1 分数方面表现出色。此外,与仅使用 EfficientNetB3 相比,该模型的效果更好。在多次测试中达到 100%的准确率,EfficientKNN 模型在现实世界的诊断应用中具有很大的潜力。这项研究强调了模型的可扩展性、对云存储的高效利用以及实时预测能力,同时最小化计算需求。通过将 EfficientNetB3 的深度学习架构的优势与 k-NN 的可解释性相结合,EfficientKNN 在医学图像分类方面取得了重大进展,有望提高诊断准确性和临床适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验