Suppr超能文献

ShallowBKGC:一种用于知识图谱补全的BERT增强型浅层神经网络模型。

ShallowBKGC: a BERT-enhanced shallow neural network model for knowledge graph completion.

作者信息

Jia Ningning, Yao Cuiyou

机构信息

School of Management and Engineering, Capital University of Economics and Business, Beijing, China.

出版信息

PeerJ Comput Sci. 2024 May 15;10:e2058. doi: 10.7717/peerj-cs.2058. eCollection 2024.

Abstract

Knowledge graph completion aims to predict missing relations between entities in a knowledge graph. One of the effective ways for knowledge graph completion is knowledge graph embedding. However, existing embedding methods usually focus on developing deeper and more complex neural networks, or leveraging additional information, which inevitably increases computational complexity and is unfriendly to real-time applications. In this article, we propose an effective BERT-enhanced shallow neural network model for knowledge graph completion named ShallowBKGC. Specifically, given an entity pair, we first apply the pre-trained language model BERT to extract text features of head and tail entities. At the same time, we use the embedding layer to extract structure features of head and tail entities. Then the text and structure features are integrated into one entity-pair representation average operation followed by a non-linear transformation. Finally, based on the entity-pair representation, we calculate probability of each relation through multi-label modeling to predict relations for the given entity pair. Experimental results on three benchmark datasets show that our model achieves a superior performance in comparison with baseline methods. The source code of this article can be obtained from https://github.com/Joni-gogogo/ShallowBKGC.

摘要

知识图谱补全旨在预测知识图谱中实体之间缺失的关系。知识图谱嵌入是知识图谱补全的有效方法之一。然而,现有的嵌入方法通常专注于开发更深层次、更复杂的神经网络,或者利用额外的信息,这不可避免地增加了计算复杂度,并且对实时应用不友好。在本文中,我们提出了一种用于知识图谱补全的有效BERT增强浅层神经网络模型,名为ShallowBKGC。具体来说,给定一个实体对,我们首先应用预训练语言模型BERT来提取头实体和尾实体的文本特征。同时,我们使用嵌入层来提取头实体和尾实体的结构特征。然后,将文本和结构特征通过平均操作集成到一个实体对表示中,接着进行非线性变换。最后,基于实体对表示,我们通过多标签建模计算每个关系的概率,以预测给定实体对的关系。在三个基准数据集上的实验结果表明,与基线方法相比,我们的模型取得了优异的性能。本文的源代码可从https://github.com/Joni-gogogo/ShallowBKGC获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c13/11157588/11a68e797346/peerj-cs-10-2058-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验