Michael Aron, Chuang Ian Yao-Hsiang, Kwok Chee Yee, Omaki Kazuo
UNSW, Sydney, NSW 2052 Australia.
Microsyst Nanoeng. 2024 Jun 6;10:75. doi: 10.1038/s41378-024-00678-5. eCollection 2024.
Low-thermal-budget, electrically active, and thick polysilicon films are necessary for building a microelectromechanical system (MEMS) on top of a complementary metal oxide semiconductor (CMOS). However, the formation of these polysilicon films is a challenge in this field. Herein, for the first time, the development of in situ phosphorus-doped silicon films deposited under ultrahigh-vacuum conditions (~10 Torr) using electron-beam evaporation (UHVEE) is reported. This process results in electrically active, fully crystallized, low-stress, smooth, and thick polysilicon films with low thermal budgets. The crystallographic, mechanical, and electrical properties of phosphorus-doped UHVEE polysilicon films are studied. These films are compared with intrinsic and boron-doped UHVEE silicon films. Raman spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used for crystallographic and surface morphological investigations. Wafer curvature, cantilever deflection profile and resonance frequency measurements are employed to study the mechanical properties of the specimens. Moreover, resistivity measurements are conducted to investigate the electrical properties of the films. Highly vertical, high-aspect-ratio micromachining of UHVEE polysilicon has been developed. A comb-drive structure is designed, simulated, fabricated, and characterized as an actuator and inertial sensor comprising 20-μm-thick in situ phosphorus-doped UHVEE films at a temperature less than 500 °C. The results demonstrate for the first time that UHVEE polysilicon uniquely allows the realization of mechanically and electrically functional MEMS devices with low thermal budgets.
低热预算、具有电活性且较厚的多晶硅薄膜对于在互补金属氧化物半导体(CMOS)之上构建微机电系统(MEMS)至关重要。然而,这些多晶硅薄膜的形成在该领域是一项挑战。在此,首次报道了使用电子束蒸发(UHVEE)在超高真空条件(~10 托)下沉积原位磷掺杂硅薄膜的进展。该工艺可得到具有低热预算、电活性、完全结晶、低应力、光滑且较厚的多晶硅薄膜。研究了磷掺杂UHVEE多晶硅薄膜的晶体学、力学和电学性质。将这些薄膜与本征和硼掺杂的UHVEE硅薄膜进行了比较。拉曼光谱、X射线衍射(XRD)、透射电子显微镜(TEM)和原子力显微镜(AFM)用于晶体学和表面形态研究。采用晶圆曲率、悬臂梁挠度曲线和共振频率测量来研究样品的力学性能。此外,进行电阻率测量以研究薄膜的电学性质。已开发出UHVEE多晶硅的高垂直度、高纵横比微加工工艺。设计、模拟、制造并表征了一种梳状驱动结构,作为一种致动器和惯性传感器,其包含在低于500 °C的温度下原位磷掺杂的20μm厚UHVEE薄膜。结果首次证明,UHVEE多晶硅独特地允许在低热预算下实现机械和电气功能的MEMS器件。