Suppr超能文献

反钙钛矿型MnCoMnN化合物中的巨零场冷却类交换偏置行为。

Giant zero-field cooling exchange-bias-like behavior in antiperovskite MnCoMnN compound.

作者信息

Sun Ying, Hu Pengwei, Shi Kewen, Wu Hui, Deng Sihao, Huang Qingzhen, Mao Zhiyong, Song Ping, Wang Lei, Hao Weichang, Deng Shenghua, Wang Cong

机构信息

Center for Condensed Matter and Materials Physics, Department of Physics, Beihang University, Beijing 100191, People's Republic of China.

NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6102, United States.

出版信息

Phys Rev Mater. 2019 Feb;3(2). doi: 10.1103/PhysRevMaterials.3.024409.

Abstract

Giant zero-field cooling exchange-bias-like behavior with = 3.49kOe was found in an antiperovskite MnCoMnN compound. The magnetic structure of MnCoMnN was resolved to be ferrimagentic ordering composed of canted Γ antiferromagnetic (AFM) and ferromagnetic (FM) along the [111] direction by the neutron diffraction technique. The exchange coupling model was proposed together with the first principles calculation for further understanding this exchange-bias-like behavior. It was found that the ferromagnetic exchange interaction between FM and the canted Γ AFM play an important role in the particular exchange-bias-like behavior. The exchange coupling constructed in the lattice is distinct from the interactions between collinear AFM and FM in conventional exchange bias system. In addition to the enhanced horizontal shift, hysteresis loops obtained after FC cooling also exhibited vertical shift. The macroscopic vertical shift of the magnetization is ascribed to the increase of the magnetic moment of canted Γ spins along the external magnetic field. This finding will promote the development of advanced magnetic devices.

摘要

在反钙钛矿型MnCoMnN化合物中发现了具有3.49kOe矫顽力的巨零场冷却类交换偏置行为。通过中子衍射技术确定MnCoMnN的磁结构为沿[111]方向由倾斜的Γ反铁磁(AFM)和铁磁(FM)组成的亚铁磁有序。为了进一步理解这种类交换偏置行为,提出了交换耦合模型并进行了第一性原理计算。结果发现,FM与倾斜的Γ AFM之间的铁磁交换相互作用在这种特殊的类交换偏置行为中起重要作用。晶格中构建的交换耦合不同于传统交换偏置系统中共线AFM和FM之间的相互作用。除了增强的水平位移外,FC冷却后获得的磁滞回线还表现出垂直位移。磁化强度的宏观垂直位移归因于倾斜的Γ自旋沿外磁场方向磁矩的增加。这一发现将推动先进磁性器件的发展。

相似文献

1
Giant zero-field cooling exchange-bias-like behavior in antiperovskite MnCoMnN compound.
Phys Rev Mater. 2019 Feb;3(2). doi: 10.1103/PhysRevMaterials.3.024409.
2
Exchange bias effect in a finite site disordered canted antiferromagnet.
J Phys Condens Matter. 2018 Sep 12;30(36):365801. doi: 10.1088/1361-648X/aad7d6. Epub 2018 Aug 3.
3
Interfacial Ferromagnetic Coupling and Positive Spontaneous Exchange Bias in SrFeO/LaSrMnO Bilayers.
ACS Appl Mater Interfaces. 2019 Jul 24;11(29):26460-26466. doi: 10.1021/acsami.9b07639. Epub 2019 Jul 11.
4
5
Coupling of pinned magnetic moments in an antiferromagnet to a ferromagnet and its role for exchange bias.
J Phys Condens Matter. 2020 Feb 13;32(7):075801. doi: 10.1088/1361-648X/ab531a. Epub 2019 Oct 31.
6
Giant Exchange-Bias-Like Effect at Low Cooling Fields Induced by Pinned Magnetic Domains in Y NiIrO Double Perovskite.
Adv Mater. 2023 Apr;35(17):e2209759. doi: 10.1002/adma.202209759. Epub 2023 Mar 25.
8
Observation of giant exchange bias effect in Ni-Mn-Ti all--metal Heusler alloy.
J Phys Condens Matter. 2021 Dec 17;34(10). doi: 10.1088/1361-648X/ac3e9b.
10
Magnetization reversal, field-induced transitions and-phase diagram of YCeCrO.
J Phys Condens Matter. 2021 Nov 30;34(6). doi: 10.1088/1361-648X/ac3453.

本文引用的文献

1
Baromagnetic Effect in Antiperovskite Mn3 Ga0.95 N0.94 by Neutron Powder Diffraction Analysis.
Adv Mater. 2016 May;28(19):3761-7. doi: 10.1002/adma.201600310. Epub 2016 Mar 23.
2
Large zero-field cooled exchange-bias in bulk Mn2PtGa.
Phys Rev Lett. 2013 Mar 22;110(12):127204. doi: 10.1103/PhysRevLett.110.127204. Epub 2013 Mar 19.
3
Detection and in situ switching of unreversed interfacial antiferromagnetic spins in a perpendicular-exchange-biased system.
Phys Rev Lett. 2012 Aug 17;109(7):077202. doi: 10.1103/PhysRevLett.109.077202. Epub 2012 Aug 16.
4
Exchange bias effect in alloys and compounds.
J Phys Condens Matter. 2011 Feb 23;23(7):073201. doi: 10.1088/0953-8984/23/7/073201. Epub 2011 Feb 2.
5
Large exchange bias after zero-field cooling from an unmagnetized state.
Phys Rev Lett. 2011 Feb 18;106(7):077203. doi: 10.1103/PhysRevLett.106.077203. Epub 2011 Feb 17.
6
Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN.
Phys Rev Lett. 2008 Nov 14;101(20):205901. doi: 10.1103/PhysRevLett.101.205901.
7
Direct observation of exchange bias related uncompensated spins at the CoO/Cu interface.
Phys Rev Lett. 2006 Feb 17;96(6):067206. doi: 10.1103/PhysRevLett.96.067206.
8
Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness.
Nat Mater. 2006 Feb;5(2):128-33. doi: 10.1038/nmat1548. Epub 2006 Jan 8.
9
Lamellar phase separation and dynamic competition in La0.23Ca0.77MnO3.
Phys Rev Lett. 2005 Apr 15;94(14):147206. doi: 10.1103/PhysRevLett.94.147206. Epub 2005 Apr 14.
10
The magnetic stability of spin-dependent tunneling devices.
Science. 1998 Aug 7;281(5378):797-9. doi: 10.1126/science.281.5378.797.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验