Kuch W, Chelaru L I, Offi F, Wang J, Kotsugi M, Kirschner J
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany.
Nat Mater. 2006 Feb;5(2):128-33. doi: 10.1038/nmat1548. Epub 2006 Jan 8.
Characterization and control of the interface structure and morphology at the atomic level is an important issue in understanding the magnetic interaction between an antiferromagnetic material and an adjacent ferromagnet in detail, because the atomic spins in an antiferromagnet change direction on the length scale of nearest atomic distances. Despite its technological importance for the development of advanced magnetic data-storage devices and extensive studies, the details of the magnetic interface coupling between antiferromagnets and ferromagnets have remained concealed. Here we present the results of magneto-optical Kerr-effect measurements and layer-resolved spectro-microscopic magnetic domain imaging of single-crystalline ferromagnet-antiferromagnet- ferromagnet trilayers. Atomic-level control of the interface morphology is achieved by systematically varying the thicknesses of the bottom ferromagnetic and the antiferromagnetic layer. We find that the magnetic coupling across the interface is mediated by step edges of single-atom height, whereas atomically flat areas do not contribute.
在原子水平上表征和控制界面结构与形态,是详细理解反铁磁材料与相邻铁磁体之间磁相互作用的一个重要问题,因为反铁磁体中的原子自旋在最近原子距离的长度尺度上会改变方向。尽管其对先进磁数据存储设备的发展具有技术重要性且已有广泛研究,但反铁磁体与铁磁体之间磁界面耦合的细节仍未可知。在此,我们展示了单晶铁磁体 - 反铁磁体 - 铁磁体三层膜的磁光克尔效应测量结果以及层分辨光谱显微镜磁畴成像结果。通过系统地改变底部铁磁层和反铁磁层的厚度,实现了对界面形态的原子级控制。我们发现,跨界面的磁耦合是由单原子高度的台阶边缘介导的,而原子级平整的区域则没有贡献。