Hata Masahiro, Miyazaki Yuki, Mori Kohji, Yoshiyama Kenji, Akamine Shoshin, Kanemoto Hideki, Gotoh Shiho, Omori Hisaki, Hirashima Atsuya, Satake Yuto, Suehiro Takashi, Takahashi Shun, Ikeda Manabu
Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.
Department of Psychiatry, Esaka Hospital, Osaka, Japan.
Front Psychiatry. 2024 May 24;15:1392158. doi: 10.3389/fpsyt.2024.1392158. eCollection 2024.
The current biomarker-supported diagnosis of Alzheimer's disease (AD) is hindered by invasiveness and cost issues. This study aimed to address these challenges by utilizing portable electroencephalography (EEG). We propose a novel, non-invasive, and cost-effective method for identifying AD, using a sample of patients with biomarker-verified AD, to facilitate early and accessible disease screening.
This study included 35 patients with biomarker-verified AD, confirmed via cerebrospinal fluid sampling, and 35 age- and sex-balanced healthy volunteers (HVs). All participants underwent portable EEG recordings, focusing on 2-minute resting-state EEG epochs with closed eyes state. EEG recordings were transformed into scalogram images, which were analyzed using "vision Transformer(ViT)," a cutting-edge deep learning model, to differentiate patients from HVs.
The application of ViT to the scalogram images derived from portable EEG data demonstrated a significant capability to distinguish between patients with biomarker-verified AD and HVs. The method achieved an accuracy of 73%, with an area under the receiver operating characteristic curve of 0.80, indicating robust performance in identifying AD pathology using neurophysiological measures.
Our findings highlight the potential of portable EEG combined with advanced deep learning techniques as a transformative tool for screening of biomarker-verified AD. This study not only contributes to the neurophysiological understanding of AD but also opens new avenues for the development of accessible and non-invasive diagnostic methods. The proposed approach paves the way for future clinical applications, offering a promising solution to the limitations of advanced diagnostic practices for dementia.
目前生物标志物辅助诊断阿尔茨海默病(AD)受到侵入性和成本问题的阻碍。本研究旨在通过使用便携式脑电图(EEG)来应对这些挑战。我们提出了一种新颖、无创且经济高效的方法来识别AD,使用生物标志物验证的AD患者样本,以促进早期且可及的疾病筛查。
本研究纳入了35例经脑脊液采样确认生物标志物验证的AD患者以及35例年龄和性别均衡的健康志愿者(HV)。所有参与者均接受便携式EEG记录,重点是闭眼状态下2分钟的静息态EEG片段。EEG记录被转换为频谱图图像,使用前沿深度学习模型“视觉Transformer(ViT)”对其进行分析,以区分患者与HV。
将ViT应用于源自便携式EEG数据的频谱图图像显示出显著区分生物标志物验证的AD患者与HV的能力。该方法的准确率达到73%,受试者操作特征曲线下面积为0.80,表明在使用神经生理测量识别AD病理方面具有强大性能。
我们的研究结果突出了便携式EEG结合先进深度学习技术作为筛查生物标志物验证的AD的变革性工具的潜力。本研究不仅有助于对AD的神经生理理解,还为开发可及且无创的诊断方法开辟了新途径。所提出的方法为未来临床应用铺平了道路,为痴呆症先进诊断实践的局限性提供了一个有前景的解决方案。