Suppr超能文献

使用便携式脑电图设备区分痴呆严重程度和诊断的精确深度学习模型。

Accurate deep-learning model to differentiate dementia severity and diagnosis using a portable electroencephalography device.

作者信息

Hata Masahiro, Yanagisawa Takufumi, Miyazaki Yuki, Omori Hisaki, Hirashima Atsuya, Nakagawa Yuta, Eto Mitsuhiro, Yoshiyama Kenji, Kanemoto Hideki, Nyamradnaa Byambadorj, Yoshimoto Shusuke, Ezure Kotaro, Takahashi Shun, Ikeda Manabu

机构信息

Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan.

Institute for Advanced Co-creation Studies, Osaka University, Osaka, Japan.

出版信息

Sci Rep. 2025 Jul 20;15(1):26304. doi: 10.1038/s41598-025-12526-1.

Abstract

Mild cognitive impairment (MCI) and dementia pose significant health challenges in aging societies, emphasizing the need for accessible, cost-effective, and noninvasive diagnostic tools. Electroencephalography (EEG) is a promising biomarker, but traditional systems are limited by size, cost, and the need for skilled technicians. This study proposes a deep-learning-based approach using data from a portable EEG device to distinguish healthy volunteers (HVs) from patients with dementia-related conditions. We analyzed EEG data from 233 participants, including 119 HVs and 114 patients, and transformed the signals into frequency-domain features using a short-time Fourier transform. A customized transformer-based model was trained and evaluated using 10-fold cross-validation and a holdout dataset. In the cross-validation, the model achieved an area under the curve (AUC) of 0.872 and a balanced accuracy (bACC) of 80.8% in distinguishing HVs from patients. Subgroup analyses were conducted for HVs versus patients stratified by dementia severity and by clinical diagnosis, yielding AUCs ranging from 0.812 to 0.898 and bACCs from 74.9 to 86.4%. Comparable results were obtained in the holdout dataset. These findings suggest that portable EEG data combined with deep learning may serve as a practical tool for the early detection and classification of dementia-related conditions.

摘要

轻度认知障碍(MCI)和痴呆症给老龄化社会带来了重大的健康挑战,这凸显了对可及、经济高效且无创诊断工具的需求。脑电图(EEG)是一种很有前景的生物标志物,但传统系统受到尺寸、成本以及对技术熟练的技术人员的需求的限制。本研究提出了一种基于深度学习的方法,利用来自便携式EEG设备的数据来区分健康志愿者(HV)和患有痴呆相关病症的患者。我们分析了233名参与者的EEG数据,包括119名HV和114名患者,并使用短时傅里叶变换将信号转换为频域特征。使用10折交叉验证和一个留出数据集对一个定制的基于Transformer的模型进行了训练和评估。在交叉验证中,该模型在区分HV和患者方面的曲线下面积(AUC)达到0.872,平衡准确率(bACC)达到80.8%。对按痴呆严重程度和临床诊断分层的HV与患者进行了亚组分析,AUC范围为0.812至0.898,bACC范围为74.9%至86.4%。在留出数据集中也获得了类似的结果。这些发现表明,便携式EEG数据与深度学习相结合可能成为痴呆相关病症早期检测和分类的实用工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4625/12277436/1730cc582524/41598_2025_12526_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验