School of Information Science and Technology, Dalian Maritime University, Dalian, 116026, China.
Department of Neurology and Neurological Sciences, Stanford University, CA 94305, USA.
Brief Bioinform. 2024 May 23;25(4). doi: 10.1093/bib/bbae280.
The identification of protein complexes from protein interaction networks is crucial in the understanding of protein function, cellular processes and disease mechanisms. Existing methods commonly rely on the assumption that protein interaction networks are highly reliable, yet in reality, there is considerable noise in the data. In addition, these methods fail to account for the regulatory roles of biomolecules during the formation of protein complexes, which is crucial for understanding the generation of protein interactions. To this end, we propose a SpatioTemporal constrained RNA-protein heterogeneous network for Protein Complex Identification (STRPCI). STRPCI first constructs a multiplex heterogeneous protein information network to capture deep semantic information by extracting spatiotemporal interaction patterns. Then, it utilizes a dual-view aggregator to aggregate heterogeneous neighbor information from different layers. Finally, through contrastive learning, STRPCI collaboratively optimizes the protein embedding representations under different spatiotemporal interaction patterns. Based on the protein embedding similarity, STRPCI reweights the protein interaction network and identifies protein complexes with core-attachment strategy. By considering the spatiotemporal constraints and biomolecular regulatory factors of protein interactions, STRPCI measures the tightness of interactions, thus mitigating the impact of noisy data on complex identification. Evaluation results on four real PPI networks demonstrate the effectiveness and strong biological significance of STRPCI. The source code implementation of STRPCI is available from https://github.com/LI-jasm/STRPCI.
从蛋白质相互作用网络中鉴定蛋白质复合物对于理解蛋白质功能、细胞过程和疾病机制至关重要。现有的方法通常依赖于蛋白质相互作用网络高度可靠的假设,但实际上,数据中存在相当大的噪声。此外,这些方法未能考虑生物分子在蛋白质复合物形成过程中的调节作用,这对于理解蛋白质相互作用的产生至关重要。为此,我们提出了一种时空约束的 RNA-蛋白质异质网络用于蛋白质复合物鉴定(STRPCI)。STRPCI 首先构建了一个多复用异质蛋白质信息网络,通过提取时空相互作用模式来捕获深层语义信息。然后,它利用双视图聚合器从不同层聚合异质邻居信息。最后,通过对比学习,STRPCI 协同优化不同时空相互作用模式下的蛋白质嵌入表示。基于蛋白质嵌入相似度,STRPCI 对蛋白质相互作用网络进行重新加权,并采用核心附着策略识别蛋白质复合物。通过考虑蛋白质相互作用的时空约束和生物分子调节因子,STRPCI 衡量了相互作用的紧密程度,从而减轻了噪声数据对复合物鉴定的影响。在四个真实的 PPI 网络上的评估结果表明了 STRPCI 的有效性和强大的生物学意义。STRPCI 的源代码实现可从 https://github.com/LI-jasm/STRPCI 获得。