Suppr超能文献

Robust and adaptive star identification algorithm based on linear assignment for multiple large field of view visual imaging systems.

作者信息

Dai Guangyi, Liu Qilin, Deng Lei, Sun Peng, Yan Bixi, Wang Jun, Dong Mingli

出版信息

Appl Opt. 2024 Apr 20;63(12):3192-3201. doi: 10.1364/AO.517051.

Abstract

The integration of the visual imaging system and the self-attitude determination system in on-orbit space projects necessitates robust star identification algorithms. However, disturbances in the on-orbit environment pose a challenge to the accuracy and efficiency of star identification algorithms. This paper introduces a novel star identification algorithm, to the best of our knowledge, designed for multiple large field of view (FOV) visual imaging systems, providing stability in the presence of the noise types, including position noise, lost-star noise, and fake-star noise. We employ the dynamic simulated star images generation method to construct simulated star image libraries suitable for various cameras with different FOV angles. Our algorithm comprises two parts: the star edge matching for coarse matching of interstellar angular distances based on linear assignment, and the star point registration for precise matching of star vectors. This innovative combination of local edge generation and global matching approach achieves an impressive 97.83% identification accuracy, maintaining this performance even with a standard deviation of one pixel in image plane errors and up to five missing stars. A comprehensive approach involving both simulated and empirical experiments was employed to validate the algorithm's effectiveness. This integration of the visual imaging system and the self-attitude determination system offers potential benefits such as reduced space equipment weight, simplified satellite launch processes, and decreased maintenance costs.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验