Gutiérrez-Vílchez Ana M, Ileperuma Chamari V, Navarro-Pérez Valeria, Karr Paul A, Fernández-Lázaro Fernando, D'Souza Francis
División de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03203, Elche, Spain.
Department of Chemistry, University of North Texas at Denton, 1155 Union Circle, #305070, Denton, TX 76203-5017, USA.
Chempluschem. 2024 Nov;89(11):e202400348. doi: 10.1002/cplu.202400348. Epub 2024 Aug 10.
Fundamental discoveries in electron transfer advance scientific and technological advancements. It is suggested that in plant and bacterial photosynthesis, the primary donor, a chlorophyll or bacteriochlorophyll dimer, forms an initial excited symmetry-breaking charge transfer state (CT*) upon photoexcitation that subsequently promotes sequential electron transfer (ET) events. This is unlike monomeric photosensitizer-bearing donor-acceptor dyads where ET occurs from the excited donor or acceptor (D* or A*). In the present study, we successfully demonstrated the former photochemical event using an excited charge transfer molecule as a donor. Electron-deficient perylenediimide (PDI) is functionalized with three electron-rich piperidine entities at the bay positions, resulting in a far-red emitting CT molecule (D). Further, this molecule is covalently linked to another PDI (A) carrying no substituents at the bay positions, resulting in wide-band capturing D-A conjugates. Selective excitation of the CT band of D in these conjugates leads to an initial D* that undergoes subsequent ET involving A resulting in D -A charge separation product (k10 s). Conversely, when A was directly excited, ultrafast energy transfer (ENT) from A* to D (k10 s) followed by ET from D* to PDI is witnessed. While increasing solvent polarity improved k rates, for a given solvent, the magnitude of the k values was almost the same, irrespective of the excitation wavelengths. The present findings demonstrate ET from an initial CT state to an acceptor is key to understanding the intricate ET events in complex natural and bacterial photosynthetic systems possessing multiple redox- and photoactive entities.
电子转移方面的基础发现推动了科技进步。有人提出,在植物和细菌光合作用中,初级供体,即叶绿素或细菌叶绿素二聚体,在光激发时形成初始激发的对称性破缺电荷转移态(CT*),随后促进连续的电子转移(ET)事件。这与带有单体光敏剂的供体-受体二元体系不同,在后者中,电子转移发生在激发的供体或受体(D或A)上。在本研究中,我们使用激发的电荷转移分子作为供体成功证明了前一种光化学事件。缺电子的苝二酰亚胺(PDI)在其湾位用三个富电子的哌啶基团进行功能化,形成一个发射远红光的CT分子(D)。此外,该分子与另一个在湾位没有取代基的PDI(A)共价连接,形成宽带捕获的D - A共轭物。对这些共轭物中D的CT带进行选择性激发会产生初始的D*,随后发生涉及A的电子转移,生成D - A电荷分离产物(k10 s)。相反,当直接激发A时,会观察到从A*到D的超快能量转移(ENT,k10 s),随后是从D*到PDI的电子转移。虽然增加溶剂极性提高了k速率,但对于给定的溶剂,无论激发波长如何,k值的大小几乎相同。本研究结果表明,从初始CT态到受体的电子转移是理解具有多个氧化还原和光活性实体的复杂自然和细菌光合系统中复杂电子转移事件的关键。